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Example

A representation X of the pure cubical complex K and a
representation Y of the pure permutahedral complex L where

K =


1 0 0 0
0 0 1 1
1 1 1 0
0 0 1 0

 L =


1 1 1 0
1 0 1 1
1 1 1 0
0 0 1 0



X Y
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The betti numbers βn(X ) of a space X can be thought of as the
number of holes with n-dimensional boundary in X , with β0(X )
being the number of connected path components in X .

Suppose we are given T ⊂ X which is a random sample of points
from X - can we calculate the betti numbers of X from T?

Example

T0 is a random sample of 710 points from some space Y .

T0.
β1(T0) = 1.
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Thickening a complex can sometimes provide more information.

Example

T1 . . .T8 are a series of thickenings of T0.

T1 T2 T3 T4

T5 T6 T7 T8
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The betti numbers at any given stage do not give a clear indication
of the betti numbers of the original space.

Example

T5 and T6 both have B1 = 3, but one hole is created and another
destroyed when T5 is thickened, so just because B1(T5) = B1(T6)
it does not mean that we can assume that they provide an
accurate representation of B1(X ).

We need to analyse which holes persist throughout a number of
thickenings.

Fintan Hegarty Persistent Betti numbers in Rn
C and Rn

P



Given a sequence of subcomplexes M1 ⊂ M2 ⊂ . . . we can
represent the persistence of holes through the sequence as a matrix
where the i th entry in the j th row is the number of holes which
exist in the i th complex and the j th complex.

Example

The peristence matrix for T1 . . .T14.

0BBBBBBBBBBBBBBBBBBBB@

37 3 0 0 0 0 0 0 0 0 0 0 0 0
0 41 4 2 2 1 1 1 1 0 0 0 0 0
0 0 13 3 3 2 2 2 2 1 0 0 0 0
0 0 0 3 3 2 2 2 2 1 0 0 0 0
0 0 0 0 3 2 2 2 2 1 0 0 0 0
0 0 0 0 0 3 3 3 3 2 1 1 1 0
0 0 0 0 0 0 4 3 3 2 1 1 1 0
0 0 0 0 0 0 0 6 4 2 1 1 1 0
0 0 0 0 0 0 0 0 5 2 1 1 1 0
0 0 0 0 0 0 0 0 0 2 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCA
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Following the work of Carlsson we represent the matrix as a bar
code with horizontal edges and vertices arranged in columns.

Example

We can see that there are 3
holes which persist for a relatively
large number of thickenings, and 1
which persists for a shorter but
non-negligible number of thickenings.
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The calculations required to find the (persistent) betti numbers
involve matrix operations which can be computationally expensive
if the matrices are large. By reducing the size of the space we can
greatly reduce the size of the matrices to be dealt with. One of the
matrices used for calculating B1(T6), for example, is of size
15165× 29902. This can be reduced to a matrix of size 27× 40 if
we reduce the space we are dealing with to a smaller space which
has the same betti numbers.
A neighbourhood is positive if its central cell can be removed
without changing any of the betti numbers of the neighbourhood.

Example

The space Z below is positive, as β0(Z ) = β0(Z ′) = 1 and
β1(Z ) = β1(Z ′) = 0. Consequently, we can remove the central cell
without affecting the betti numbers of the space they are in.

Z Z ′
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Example

The two neighbourhoods below are not positive, as removing the
red cell in either would change either β0 or β1 respectively.

There are only 28 possible combinatorial types of neighbourhood in
R2

C so we can compute and store a list L2
C indicating whether each

neighbourhood is positive or not. We contract a complex by
checking all its cells against L2

C and removing those whose
neighbourhoods are positive.
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Example

Here, CT6 = Contracted(T6) has the same betti numbers, but
only 445 cells, as opposed to 12843.

It is possible, by recursively finding bounding spaces and
contracting them, to find a smaller yet homotopy equivalent retract
of a space X , which we refer to as a zig-zag retraction ZZ (X ).
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Example

Here is ZZ (CT6) which consists of only 11 cells, as opposed to
T6’s original 12843:

Analogous methods exist in higher dimensions, though L4
C the list

indicating positivity of neighbourhoods in the 4-dimensional
cubical case, with 280 entries, is too large to store.
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In the permutahedral case, however, the 4-dimensional list of
positive neighbourhoods L4

P is of length 230, and so is possible to
compute and store. This enables us to efficiently contract, and
hence calculate the betti numbers etc of 4-dimensional data. The
pure permutahedral complex and pure cubical complexes will not
necessarily have the same betti numbers everywhere...

Example

β1(T6) = 3 in the pure cubical case, but β1(PT6) = 2, where PT6

is the result of 6 thickenings of T0 in the pure permutahedral case.

T6 PT6
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...but the
persistent
betti
numbers and
bar codes
yielded
should be
similar.

Example
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