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[llustration of Applied Topology

gap>A:=ReadImageAsPurePermutahedralComplex("washers. jpg",250) ;
Pure Permutahedral Complex of dimension 2.

gap> Bettinumbers(4);
[14 , 10, 0]
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Two cells are said to be neighbours if they share a vertex. The
neighbourhood of a cell is the union of all its neighbours.
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Definition

A chain complex is a sequence of free abelian groups Gy, G, Gy, . ..
connected by boundary homomorphisms 6, : C, — C,_1 such that
the composition of 6, 0 §,11 = 0.
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Columns in §] correspond to edges and the rows to vertices.
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Definition

A chain complex is a sequence of free abelian groups Gy, C1, Gy, . . .
connected by boundary homomorphisms 6§, : C, — C,_1 such that
the composition of 6, 0§11 = 0.
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Homology Group Construction

Definition
From its chain complex, we can find the nth homology group of X.

Hp(X) = ker(,)/im(0p+1)-

Definition

The n'" Betti number is the rank of H,(X), and gives the number
of holes with an n-dimensional boundary in X.

These matrices can be large, (01 is a 22320 x 15572 matrix for our
washers. jpg example) so reducing the size of the space without
changing its homology aids computation.
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The Permutahedron

An n-dimensional permutahedron is the convex hull of n! points in
(n+ 1)-dimensional Euclidean space. The coordinates of these
points are the permutations of the integers (1,2,3,...,n+1).

23,13
(1 !352’)

(3,2,13
(1,2,3)

3,1,Z
2,1,3) - :

Two vertices, v; and v, are connected by an edge if swapping two
entries in v; whose values differ by 1, gives vs.
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Main Advantage of Permutahedral Tessellation

An n-dimensional permutahedron has ontl _ 9 neighbours,
whereas an n-cube has 3" — 1 neighbours.

Table: Number of neighbours of an n-cell in dimension n.

Cubical | Permutahedral

n
1 2 2
2 8 6
3 26 14
4 80 30
5 242 62
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gap> A:=0;;

gap> for i in [1..3] do A:=List([1..100],i->Copy(A));;
gap> C:=PureCubicalComplex(A);;

gap> P:=PurePermutahedralComplex(A);;

gap> for i in [1..20] do

> C:=ThickenedPureCubicalComplex(C); od; time;

92

gap> for i in [1..20] do

> P:=ThickenedPurePermutahedralComplex(P); od; time;

9
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A cell is said to be positive if we can remove it without affecting
the homology of its neighbourhood. Removing all positive cells
from a space reduces its size without changing its homology.

Definition

A list indicating whether any possible neighbourhood is positive, in
the permutahedral case, is stored in HAP_Permutahedral for up to
4 dimensions, allowing for efficient recognition and removal of any
positive cells. In the cubical case, this list is only available up to
dimension 3, as the list for 4 dimensions would be of length 289

o
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A list L9 is stored in HAP_Permutahedral with each entry being 1
or 0. The position of each entry corresponds uniquely to a
particular neighbourhood. The software need only then check the
neighbourhood of a cell in some complex and check whether the
corresponding entry in .9 is 1 or 0, rather than having to calculate
the homology of the neighbourhood of each cell. Consider the
space below which has 48 facets.

We progress through each facet, checking for facets with positive
neighbourhoods. If we find one we remove it and iterate through
the space again.

Fintan Hegarty Computational Homology Of Permutahedral Complexes



Fintan Hegarty Computational Hol dral Complexes




Fintan Hegarty Computational Hol dral Complexes




Fintan Hegarty Computational H dral Complexes




Zig-Zag retraction

This space X has the same Betti numbers as our original space,
but only 18 facets.

X
By finding a space B such that X C B and Y C B such that Y is
maximal and homotopy equivalent to X, it is often possible to
reduce the size of the necessary space even further.
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Contracting Y using the first method shown reduces to the space
below, with only 4 facets:
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gap> SizeOfPurePermutahedralComplex(A);
6752

gap> C:=ContractedComplex(A);

Pure Permutahedral Complex of dimension 2.
gap> SizeOfPurePermutahedralComplex(C);
745

gap> ZZ:=ZigZagContractedComplex(A);;

gap> SizeOfPurePermutahedralComplex(ZZ);
64
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Implementation

Definition

A pure B-complex K = (A, B, T) consists of
@ a binary array A = (a)) of dimension d,
@ a basis T = {t1,t,...,tq} for R,
e a finite set B C Z¢. We call B the ball.

Definition

Given some \ € Z9 such that ky = 1, where k) is a cell in K, we
define the neighbourhood N(ky) to be the union of ky;p : b € B.

= 1% 4
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Data Types

Pure B-complexes
@ Pure permu- | | Chain complexes
tahedral
complexes | 7 f N
@ Pure cubical CW-complexes Homology
complexes
X
S~ N\ 1
@ other — Simplicial
complexes
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Discrete Vector Fields

A discrete vector field on a regular CW-space X is a collection of
arrows « : s — t where

@ s, t are cells and any cell is involved in at most one arrow
e dim(t) = dim(s + 1)
@ s lies in the boundary of t.

.—l': .l.
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Discrete vector field Not a discrete vector field
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A sequence of arrows «ag : s — t1,Qp : Sp —> tp,... in a vector
field is a path if

@ the s; are cells of common dimension d and the t; are cells of
common dimension d + 1.

@ each sj;1 lies in the boundary of t;.
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A discrete vector field is admissible if it contains no cyclic paths. A
cell is critical if it is involved in no arrows of the vector field. A
fundamental theorem of discrete Morse theory states:

Theorem

If X is a regular CW-space with an admissible discrete vector field
then there is a homotopy equivalence

X~Y

where Y is a CW-space whose cells are in one-to-one
correspondance with the critical cells of X.

w =
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Another benefit of using permutahedra

Another benefit to using permutahedral complexes is that, unlike
in the cubical case, Comp(Cont(x)) ~ Cont(Comp(x)).

X Comp(X) Cont(X)

Comp(Cont(X)) Cont(Comp(X))
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(Comp(X))

Cont
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Link Diagram Application

B : A link diagram of Borromean rings.

’ ) \
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Cubical Size Time | Permutahedral | Size Time
Contracted(B) | 3238 33
Crop(B) 33654 4 Crop 1
Complement 1025724 | 3 Complement 352642 | 1
Contracted 114556 | 259 Contracted 70716 | 30
ToCWComplex 63 ToCWComplex 32
CriticalCells 33 CriticalCells 13

gap> F:=FundamentalGroupOfRegularCWComplex;

there are 3 generators and 2 relators of total length 22
<fp group of size infinity on the generators [ f1, £2,
£3 1>

gap> RelatorsOfFpGroup (F);

[flsf3 1% f271xf3xf2xfl 1xf271*xf371xf2x%f3,

F171% F3 1% 2% Flx F3%f1 1371 %2 1532 f1%f371]

Fintan Hegarty Computational Homology Of Permutahedral Complexes



Geometric Application

If we let p, be a ball of radius r about a point p on the boundary
B(X) of some space X, and let C; and C, be the two components
of p, as divided by B(X), then if

Size(Cy) — Size( ()
Size(Cy) + Size( ()

where 7 is some user-defined threshold, we can say the point p is a
singularity. This can be used to find ‘interesting’ points in a space.

’
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gap> numberofwashers:=0;

gap> for i in [1..PathComponentOfPureCubicalComplex
(A,0)] do

> if Size(SingularitiesOfPureCubicalComplex
(PathComponent0OfPureCubicalComplex(A,i),5,50))=0 then
> numberofwashers:=numberofwashers+1; fi; od;

gap> numberofwashers;

6
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Estimating Homology from a Data Sample

There are two types of people in the world; those who can extrapolate
from incomplete data...

gap> S:=Sample(A,400);; gap> T:=Thickened(S);;
gap> Bettinumbers(S); gap> Bettinumbers(T);
[317 , 0, 0] (3,37, 0]

Definition

A bar code is a graph which has horizontal edges and vertices arranged in
columns. If a vertex in the ith column is connected to a vertex in the jth
column, this signifies that the hole persists from the ith to the jth
thickening. A hole which persists through a significant number of
thickenings can be deemed representative of the space.
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Persistent Homology
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(1 for each path component
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