COMPUTATIONAL HOMOLOGY OF
CUBICAL AND PERMUTAHEDRAL COMPLEXES

by

Fintan Hegarty

School of Mathematics, Statistics, and Applied Mathematics
Supervised by Prof. Graham Ellis

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
NATIONAL UNIVERSITY OF IRELAND, GALWAY
UNIVERSITY ROAD, GALWAY, IRELAND
September 2012

Abstract

Homology is the study of connectivity and “holes” in spaces. The aim of this thesis is
to introduce and develop a theory of permutahedral complexes for computations of homology
of large data sets and to compare, using efficient implementations, the performance of this
theory with that of cubical complexes. We develop practical tools, to be submitted as a
GAP package, for computing the homology of n-dimensional Euclidean data sets, where
n =1,2,3,4, and certain higher-dimensional data sets. Certain computational advantages of
using a permutahedral structure are identified; the notion of a pure B-complez is introduced
as a data type for implementing a general class of regular CW-spaces; zig-zag homotopy
retractions are introduced as an initial procedure for reducing the number of cells of low-
dimensional pure B-complexes with discrete vector field techniques being applied for further
reduction; a persistent homology approach to feature recognition in low-dimensional images
is illustrated; implementing these algorithms in the GAP system for computational algebra

allows for their output to benefit from the system’s library of efficient algebraic procedures.

Acknowledgements

I wish to express my deepest gratitude to my supervisor, Professor Graham Ellis, for his
patience and encouragement, and for his generosity both with his time and his advice. His
knowledge and insight during the four years proved invaluable. Thanks are due also to
Science Foundation Ireland for paying me to do something I really enjoyed. I am grateful to
Dr. Christoph Kleefeld for talking to me about his work, and discussion of some potential
applications of our software.

I hugely appreciate the efforts of Dr. Pddraig O Cathdin and Mark Jennings who
proofread the thesis and offered their advice, and Nick Geoghegan who answered so many
of my questions when I was first learning to use the Linux operating system. I would also
like to thank the staff and other postgraduates in the Department of Mathematics for their
assistance and distraction as necessary, and the people in the Chess Society and the Societies
Office for further distraction.

For everything else and more, I would like to thank my parents, without whom none of
this would have been possible. It is to my father, who first taught me that mathematics can
be fun, that this thesis is dedicated.

Contents

1 Preliminaries

1.1 Simplicial complexes and spaceso
1.2 Homology and other invariants L.
1.3 Homotopy« .

2 Tessellated Spaces

2.1 CW-Spaces o v i e e
2.2 Tessellated Spaceso e
2.3 Persistent Homology L
2.4 Positive Neighbourhoods
2.5 Zig-zag retraction L. Lo oL oo e e
2.6 Discrete Morse theory L L
2.7 Singularities L. e e

3 Cubical Complexes

3.1 Pure cubical complexes L L L
3.2 Cubical complexes e
3.3 Abstract cubical complexes

4 Permutahedral Complexes

4.1 The permutahedron e
42 R .o e
4.3 Pure permutahedral complexes oo

iv

11
11
16
20
25
29
33
39

41
41
42
47

Contents

44 Neighboursin R% o oo oo 64
4.5 Chain complex 65
Implementation 68
5.1 Representation and Creation 68
5.2 Neighbourhoods 74
5.3 List of positive neighbourhoods 78

531 Creating L& 80

53.2 Creating LG 81
5.4 Chain complexes e 82

5.4.1 Cubical complexes 82

5.4.2 Pure permutahedral complex oo 83

5.4.3 Chain complex of pair 85
5.5 Computation times 85
5.6 Software Comparison L Lo e 89
5.7 Abstract cubical complexes 90
Potential Applications 94
6.1 Estimating Topology L e 94
6.2 Image segmentation L o 97
6.3 Tracking Components e 103
6.4 Measuring Shape 104
6.0 Knots e 106

Introduction

Intuitively, homology is understood to be the study of the number and nature of the “holes”
and connected components of a topological space [36]. The spaces dealt with in this thesis
are all finite CW-spaces, with the main focus being on the development of some theory for
homology computations using CW-spaces based on n-dimensional permutahedra.
There is growing interest in constructing efficient algorithms for calculating homological and
homotopical properties of spaces. This is motivated by areas of research such as topological
data analysis [6], image analysis [26] and a range of other applied topics [15][16].

GAP [20] is a freely distributed, open-source system for computational discrete algebra.
It provides a programming language and a large library of functions implementing algebraic
algorithms written therewith. As part of this thesis a fully documented GAP package [39]
for computing the homology of CW-spaces arising as subspaces of low-dimensional Euclidean
space (up to dimension 4) has been created for submission to GAP.

Here follows a brief outline of the structure of the thesis.

e Chapter 1 recalls the essential basic concepts used throughout the thesis and contains

no new material.

e Chapter 2 introduces the notions of tessellated space and pure B-complex - specific cases

of which are dealt with in later chapters.

e Chapter 3 explains what is meant by a cubical complex and a cubical space in this thesis,

and examines the theory behind a selection of computations using these.

e Chapter 4 introduces and develops some theory for permutahedral compleres and per-
mutahedral spaces analogous to that for the cubical cases in Chapter 3, and examines
why certain computations using permutahedral complexes might be more efficient than

those using cubical complexes.

e Chapter 5 contains an implementation of the computations for both cubical and per-

mutahedral complexes, and compares the efficiency of these implementations.

e Chapter 6 analyses how the developed package might be applied to real-world data.

We describe an approach to computing homotopical and homological properties of finite
regular CW-spaces involving a large number of cells, paying particular attention to those
arising as a union of closures of n-cells with isomorphic face posets. The approach underlies
the software package HAP [13] for group cohomology and related homotopical algebra, and,
in the cubical case, the CAPD homology software [30][24][26]. The approach complements
the PLEX [10] and KENZO [35] software packages which are aimed at the computation of
the persistent homology of simplicial complexes and the homology and homotopy groups of
simply connected spaces respectively.

An excellent treatment of computational topology has already been given in the text-
book [26]. The approach described in this thesis is essentially the same, but our account

focuses on some new computational features that may be of general interest. In particular:

(i) We introduce the notion of pure B-complexr as a data type for implementing a range
of algorithms on a general class of regular CW-spaces. The class includes certain pure

cubical and pure permutahedral subspaces of R™.

(ii) We identify two computational advantages of permutahedral cells over cubical cells.
The first is that an n-cell in the standard permutahedral tessellation of R™ has fewer
neighbours than an n-cell in the standard cubical tessellation. This allows us to extend
a practical procedure for obtaining ‘minimal’ homotopy retracts of cubical lattice spaces
of dimension < 3 to the permutahedral lattice spaces of dimension n < 4. The second
advantage is that our permutahedral lattice spaces are manifolds, and thus behave nicely

with respect to taking complements.

(iii) We describe a persistent homology approach to feature recognition in low-dimensional

digital images.

(iv) We apply zig-zag homotopy retractions as an initial procedure for reducing the num-
ber of cells of low-dimensional pure B-complexes. More standard discrete vector field

techniques are applied for further cellular reduction (cf. [24]).

(v) We implement our algorithms in the GAP system for computational algebra. The output

of our algorithms (which takes the form of finitely presented groups, abelian groups etc.)
can thus benefit from GAP’s vast library of efficient procedures for symbolic algebra.
We also benefit from GAP’s sophisticated method selection mechanism for selecting
appropriated algorithms when computing topological properties for a range of high

level data types.

As motivation we suggest a number of potential applications in Chapter 6, after devel-
oping, throughout the thesis, the theory and methods which could be used.

We identify useful implementations at three levels of generality; finite regular CW-
spaces, tessellated spaces, and spaces based, for example, on cubical and permutahedral lat-
tices.

Along with computations of integral homology and persistent Betti numbers, in Chap-
ter 6 we illustrate the homotopical nature of the approach by including an example of the

computations of fundamental groups.

1 Preliminaries

This section recalls the basic definitions and concepts needed in the thesis. The material is
standard and can be found, for instance, in Hatcher’s “Algebraic Topology” [25] or Munkres’

“Elements of Algebraic Topology” [33].

1.1 Simplicial complexes and spaces

Definition 1.1. A finite simplicial compler K consists of a finite set S of vertices and a

collection C' of non-empty subsets of S such that if p € C and ¢ C p then ¢ € C.

Definition 1.2. A pure simplicial complex K is a simplicial complex such that the inclusion

maximal subsets in C' all have the same dimension.

Example 1.3. The simplicial complex K where S = {1,2,3,4} and C' = {{1}, {2}, {3}, {1, 2},
{1,3},{2,3}} is a pure simplicial complez as all inclusion maximal subsets are of length 2. If,
however, C' = {{1},{2},{3}, {4}, {1,2},{1,3},{2,3}} then C has inclusion maximal subsets

of lengths 1 and 2, so K is not pure.

Definition 1.4. A subset T of R™ is said to be convex if for every pair of points within T,

every point on the straight line segment that joins them is also within T

Definition 1.5. The convex hull of a set of points T in R" is the intersection of all convex

sets containing T

Definition 1.6. A set of points {s1,...,s,+1} C R™ is affinely independent if the set {sy —

S1,83 — S1,...,Sn+1 — S1} is linearly independent.

1.1. SIMPLICIAL COMPLEXES AND SPACES CHAPTER 1. PRELIMINARIES

Definition 1.7. An n-simplex is the convex hull of a subset of n + 1 affinely independent

points in Euclidean space.

Definition 1.8. Let by = {u1,...,un} and by = {v1,...,v,} be two ordered bases for a vector
space V. Let A : V — V be the matrix representing the identity map with respect to the
bases b1 and by. The bases by and by are said to have the same orientation if A has positive
determinant, otherwise they have opposite orientation. If V' is non-zero there are precisely
two equivalence classes determined by the equivalence relation which is defined for all bases
of V' which have the same orientation. An orientation on V is an assignment of +1 to one

equivalence class and —1 to the other.

We define the closed n-ball

E"={x e R":||z|| <1},

the n-sphere
St ={z¢€ R . [|lz|]| = 1}

and the open n-ball
D" ={x e R" : ||z|| < 1}.

Definition 1.9. An (n+ 1)-dimensional topological space X is Hausdorff if any two distinct

points s1, so of X can be separated by open sets dy,ds such that s; € dy, so € da,dy Ndy = 0.

Let X be a Hausdorff space with subspace Z C X. A space Y is said to be obtained
from X by attaching an n-cell to Z if X C Y and there exists a continuous map ¢ from the
closed n-ball to Y that restricts to a continuous map ¢’ from the (n —1)-sphere to Z and that

maps the interior of the closed n-ball homeomorphically into Y.

Definition 1.10. [12] An n-dimensional finite CW -space is a Hausdorff space X possessing
a chain of subspaces

X0cx'cX?c...cX"=X

1.2. HOMOLOGY AND OTHER INVARIANTS CHAPTER 1. PRELIMINARIES

where X© is a discrete finite set and where, for each d > 1, there is a chain of subspaces
X =xlcxic.. . cxl=x1

with Xfl obtained from X{j_l by attaching a d-cell to X d-1

Definition 1.11. A CW-space is said to be regular if every cell is attached by a map which

restricts to a homeomorphism on the boundary of the cell.

Definition 1.12. The n-skeleton of a CW-space X is the union of the k-cells of X where

k < n, and we denote by e;? the jth cell of the dimension k.

Figure 1.1: A chain of subspaces of a 2-simplex.

Definition 1.13. A finite simplicial space is a C'W-subspace of the n-simplex.
Every finite simplicial space X can be represented combinatorially by a finite simplicial
complex K, with this denoted by X = |K|. We say that the space X is pure if the complex

K is pure.

Example 1.14. A simplicial space X consisting of a solid triangle can be represented by a sim-
plicial complex with its set of subsets comprising one 2-dimensional cell, three 1-dimensional
cells (corresponding to the edges), and three O-dimensional cells (corresponding to the ver-

tices).

1.2 Homology and other invariants

First, we recall some basic definitions from group theory, which can be found, for instance,
in Hall’s “Theory of Groups” [23]. Let G be a group and H be a subgroup. We define a right
coset of H in G as follows: Hg = {hg | h € H}. Similarly, we define a left coset of H in G as

gH = {gh | h € H}. The left (or right) cosets of H in G form a partition of G. H is normal

1.2. HOMOLOGY AND OTHER INVARIANTS CHAPTER 1. PRELIMINARIES

if and only if the left and right cosets coincide, ie. for any g1 € G there exists go € G such
that g1H = Hgy. If H is a normal subgroup of GG then we can define multiplication on the
cosets of H as:

HgiHgy = Hg19o.

Under this operation, the set of cosets of H form a group, the quotient group G/H.

A homomorphism of groups, ¢ : G1 — G35 is a structure-preserving map between groups. An
isomorphism is an invertible homomorphism. The kernel of ¢, Ker(¢), is a normal subgroup
N of G and the image of ¢, Im(¢) is isomorphic to G/N.

A group G is abelian if g1go = gagy for all g1, 92 € G. A free abelian group is one with a basis.
A group G is finitely generated if its generating set, a set of group elements not contained in
any subgroup of G other than the entire group itself, is finite. A finitely generated abelian
group is torsion-free if for all n € N the only solution of ¢" = 1 in G is the identity. A
torsion-free finitely generated abelian group is free. [37]

The direct product H G; is the cartesian product of sets endowed with the natural product.
A finitely generatecziefree abelian group G is isomorphic to a direct product of copies of Z.
The number of copies is called the rank of G. A sequence of groups is a set of groups G; with
homomorphisms ¢; : G; — G;_1 with the property that the Im(¢;) < Ker(¢;—1). A sequence

of groups is exact if Im(¢;) = Ker(¢;—1) for all i.

Definition 1.15. In this thesis a chain complex [5] Cy is a sequence of finitely generated
free abelian groups Cpy,Cq,... together with homomorphisms ¢, : C, — C,_1 such that

Op—100, =0 foralln > 1.

Definition 1.16. The chain complex Ci(K) of the simplicial complex K is constructed as
follows:
Any simplex K can be written as {s,..., sy}, where sg < s1,..., s, in the chosen ordering.

Then C,(K) is the sequence of free abelian groups

s Co(K) 2 Gy (K) 25 G o (K) — . — Co(K) 22 Oy (K) 25 Co(K)

1.2. HOMOLOGY AND OTHER INVARIANTS CHAPTER 1. PRELIMINARIES

where C,,(K) is the free abelian group on the subsets of length n+ 1 in K, and the boundary
homomorphism 6, : Cp,(K) — C,—1(K) is defined by

(5n({80, ceey Sn}) = Z(—l)i{SO, ey Si—1ySi41y ey Sn}-

=0

The chain complex Ci(X) of the simplicial space X, where X = |K| is defined to be that of

its associated simplicial complex K.
C.(X) = Cu(IK]).

Example 1.17. Let K be the simplicial complex with S = {a,b,¢,d} and C = {{a}, {b}, {c},
{a/7 b}7 {CL7 c}? {b7 C}? {a7 b’ C}}'

Then
CuK)=0—-221732%73 0
where
62({(17 b, C}) = {b’ C} - {a7 C} + {av b},

01({a,b}) = {b} — {a},

01 ({b, c}) = {c} — {b},

o1({a,c}) = {c} — {a}.
Then

81006y = 81({b,c}) — 61({a, c}) + 61({a, b}) = 0.

Let C, (X) be a chain complex of a simplicial space X. The boundary homomorphism
O 1 Cp(X) — Cp—1(X) has left-acting matrix representation A,, with respect to the canonical
basis and dg is taken to be the zero homomorphism. The entries in the boundary matrix A,
are either 0,1, or -1, with 0 indicating that the (n — 1)-simplex is not present in the boundary
of the n-simplex, and, otherwise, the sign representing the orientation of the (n — 1)-simplex

which is present in the n-simplex. Then we can calculate

1.2. HOMOLOGY AND OTHER INVARIANTS CHAPTER 1. PRELIMINARIES

e dim (ker (6,)) = ay, — rank (A,)
e dim (image (d,,)) = rank (A,)

where rank(A,) is the dimension of the vector space spanned by the rows of A, and «, is
the number of columns of A,,. In this thesis dim(A) is used to mean the rank of a largest
free abelian subgroup of A.

The n'* homology of X can now be defined.

Definition 1.18.

ker(d,,) .
mage(G) 7
H,(Ci(X)) =
Co TR
image(d1) it n=0

Henceforth H,, (Cy (X)), the n'" homology of the chain complex of X, may be abbreviated to
H, (X).

Definition 1.19. The n'" Betti number of X can de defined as:
Bn (X) = dim (H,, (C« (X))) = dim (ker (,,)) — dim (image (dp+1)) -

We can think of ;(X) as the number of holes in X whose boundaries are made up of
i-dimensional cells, with Gy representing the number of path components.
Two points s and t in a CW-space X are said to be in the same path component if there is a
continuous map p : [0,1] — X with p(0) = s and p(1) = t.
Definition 1.20. The Fuler Characteristic x(X) of a simplicial space X is defined to be the
alternating sum of its Betti numbers.

)
X(X) =D (~1)'Bi(X).

=0

One motivation for calculating homological invariants such as the Euler Characteristic

and Betti numbers and homology of spaces is in order to compare and contrast spaces with

1.2. HOMOLOGY AND OTHER INVARIANTS CHAPTER 1. PRELIMINARIES

one another, and analyse the effects of perturbations on a space.

Example 1.21. Consider the 2-simplex with vertices X in Figure 1.2.

{a}

fab} {ac}

b {c}
(b} {be} ¢

Figure 1.2: The 2-simplex X with vertices {a}, {b}, {c}.
The corresponding simplicial complex K has the collection of subsets
{{a,b, ¢}, {a,b},{a, c},{b, c},{a}, {b}, {c}}.
The chain complex of this simplicial complex is

=223 7 0

where
0y = (1 -1 1 >
-1 1 0
=] -1 0 1
0o -1 1
Then
Z if n=0,
H,(X) =
0 if n>0,
1 if n=0,
0 if n>0,
x(X)=1

1.2. HOMOLOGY AND OTHER INVARIANTS CHAPTER 1. PRELIMINARIES

Definition 1.22. Let C, and C’ be two chain complexes. A chain map @, : C, — C. is a

collection of linear homomorphisms ®,, : C;, — C/, such that the diagram below

Chi1 D1 Chia
5n+1 6;L+1
Ch D, cl

commutes for all n > 0. That is, ®,0p41 = 0, Ppy1 for n > 0. [12]
Since the commutativity equations ®,,8,,+1 = 9/, +1®Pny1 imply that
1. ®,(ker(d,)) C ker(d],) and
2. @, (image(d,41)) C image(d;,,)

we can say that the chain map ®, : C, — C. induces homomorphisms

Hy(®y) : Hy(Cy) — Hn(C;)a

v + image(dp41) — Pn(v) + image(d;, ;)
for all n > 0.

Example 1.23. If a simplicial complex K has a simplicial subcomplex L, then the inclusion

L — K induces a chain map C4(L) — C.(K).

The definitions 1.16, 1.18, 1.19, 1.20 for simplicial spaces extend in a routine fashion to

regular CW-spaces. So, too, does Example 1.23.

1.3. HOMOTOPY CHAPTER 1. PRELIMINARIES

1.3 Homotopy

Definition 1.24. Two continuous functions f and g from a space X to a space Y are said
to be homotopic (f ~ g) if there exists a continuous function H from X x [0,1] — Y such

that H(x,0) = f(z) and H(z,1) = g(x). [3]

Definition 1.25. Two topological spaces X and Y are homotopy equivalent if there exist
continuous functions f: X - Y and g: Y — X such that fog:Y =Y andgof: X — X

are homotopic to the corresponding identities: Idy and Idx. [3]

Definition 1.26. A retracting homotopy of a space X with subspace Y consists of a con-
tinuous function f : X — Y and the inclusion ¢ : Y — X such that fog:Y — Y and

go f: X — X are homotopic to the corresponding identities: Idy and Idx. [3]

Definition 1.27. Topological spaces which are homotopy equivalent to a point are said to

be contractible.
The main theorem underlying this thesis is the following [25]:

Theorem 1.28. Let f : X — Y be a homotopy equivalence between C'W -spaces X,Y . This
map induces an isomorphism

H,(X)= H,(Y)

for all n > 0.

Definition 1.29. A cover) of a topological space X is a collection of subsets of X whose

union is the whole space X. € is an open cover if each of its members is an open set.

Definition 1.30. For some topological space X and an open cover 2 thereof, the Céch

complexr K () is the simplicial complex constructed as follows:
e There is one vertex for each element of €.
e There is one edge for each pair wy,ws € 2 such that wy Nws # 0.

e More generally, there is one k-simplex for each k + 1-element subset {w1,...,wk1} of

Q for which wy N ... Nwgyq # 0.

1.3. HOMOTOPY CHAPTER 1. PRELIMINARIES

The following theorem [25] will be useful.

Theorem 1.31. Let X be a CW -space. Let Q) be a collection of contractible open subsets of X
whose union is X. Suppose that any intersection of sets in § is either empty or contractible.

Then there is an isomorphism

10

2 Tessellated Spaces

2.1 CW-spaces

A good introduction to CW-spaces can be found in Massey’s “A Basic Course in Algebraic
Topology” [27].We restrict our attention to finite regular CW-spaces because their cell struc-
ture can be easily stored on a computer as a binary array with each entry indicating the pres-
ence or absence of a certain facet. Since there are only finitely many cells, we can assign them
a numbering and then each space can be represented as a sequence of lists M°, M, ... M"
where the ith term of the list M7 = {m]l, m%, ...} records the (j — 1)-dimensional cells which
lie in the boundary of the ith j-dimensional cell. We also, correspondingly, encode the list of
(j + 1)-dimensional cells whose boundaries contain the ith j-dimensional cell. This can prove

to be of some benefit in the implementation of certain algorithms. The j** cell of dimension

k

k in the k-skeleton of X, we denote as €.

We define the closure of a cell eé? in X to be the smallest CW-subspace e

S in X containing

e?, and the closure of a subset Y C X to be the smallest CW-subspace Y in X containing

Y. The sequence RV, ..., R™ is just an encoding of the partial order on the set of cells e;? in X

given by setting eé? < e;?,/ if k < k' and eé‘-“' lies in the closure of e;?,/ . This face poset determines

the regular CW-space X up to homeomorphism. We say some e? is mazimal if it does not lie

in the closure of any (k + 1)-dimensional cell. We define the complement of a maximal cell e?

in X to be the CW-space X \% arising as the closure of X \%

Definition 2.1. We define the contact complex of a maximal cell e;‘? in X to be the CW-space

Cont(e;?) = 67? NnX \% arising as the intersection of the closure and complement of e;? .

Definition 2.2. [8] We say a maximal cell e? is redundant if Cont(e?) is contractible.

11

2.1. CW-SPACES CHAPTER 2. TESSELLATED SPACES

Definition 2.2 is motivated by J.H.C. Whitehead’s theory of simple homotopy, an ac-
count of which can be found in [8].In this theory a CW-space Y is said to be obtained from

a CW-space X by an elementary collapse, X \, Y, if
1. Y is a CW-subspace of X,
2. X =Y UerUe™ ! with e”,e" ! cells not in Y,

3. there exists a standard ball pair (D", D"~!), homeomorphic to (I"~! x I, 1"~! x 1) with

I = [0,1], and a characteristic map ¢: D" — X for " which maps D"~ ! to Y"1,

4. the restriction of ¢ to the closure D" \ D"~1 of the boundary of D™ minus D" ! is a

characteristic map for e”~! .

Proposition 2.3. If ef s a redundant mazximal cell in the finite reqular CW-space X then

the inclusion map X\e? — X s a homotopy equivalence, and X\e? 1s a homotopy retract of

X.

For some regular CW-spaces it is easy to design an efficient algorithm to recognise
particular redundant cells therein. We shall call such an algorithm a redundancy test. Such a
test is said to be optimal if it will recognise every redundant cell. Proposition 2.3 yields the

following two algorithms.

Algorithm 2.4. Input: A finite regular CW-space X, a CW-subspace A C X, and a redun-
dancy test for X.
Output: A CW-subspace X’ which is a homotopy retract of X such that A C X’ C X. If the
redundancy test is optimal X’ will be minimal.
Procedure:

Initialise X' := X

while there is some cell e;‘? in X’ not in A which is recognisably a redundant

cell of X’ \% do

Set X' := X"\ek.

end while

12

2.1. CW-SPACES CHAPTER 2. TESSELLATED SPACES

Algorithm 2.5. Input: A finite regular CW-space X, a non-empty CW-subspace A C X,
and a redundancy test for X.
Output: A CW-subspace X’ such that A is a homotopy retract of X’ and A ¢ X' ¢ X. If
the redundancy test is optimal X’ is minimal.
Procedure:

Initialise X' := A

while there is some cell e? in X which is recognisably a redundant cell of X ’Ue?

do

Set X' := X’Ue?.

end while

The cellular chain complex
Co(X): o= Ch(X) 2 i (X) — ... — Co(X)

of a finite regular CW-space X is constructed by taking Cx(X) to be the free abelian group
with free generators corresponding to the k-cells of X, and with the boundary homomorphisms

given by

k ki1k k—
O(ef) = D elbliel ™

where

1 if effl lies in the closure of e
b = /
0 otherwise

0 when bfj =0,

1 when k=1,b,, =1,b}. =1,i <7,

Eo_ g I
EZ] —_—)
—1 whenk:l,b}j:1,b},j:1,z>z'/,

+1 when k> 1, bfj = 1, with sign uniquely determined by the equation §x_1d; = 0

Definition 2.6. Let X be a regular CW-space with CW-subspace Y C X. From the induced

13

2.1. CW-SPACES CHAPTER 2. TESSELLATED SPACES

injective chain map

O, : C.(Y) — Cu(X)

we define the quotient chain complex:
Cu(X/Y) = Cu(X)/CL(Y),

where C,,(X/Y) is the quotient free abelian group C,(X)/C,(Y) and the boundary on C,(X)
induces the boundary homomorphism C,(X/Y) — C,_1(X/Y).

Definition 2.7. From the above definition, given a regular C'W-space X and subspace Y C
X, we define H,(X,Y) = H,(C.(X/Y)).

The following is a standard result [25]:

Theorem 2.8. If X is a space and Y is a nonempty closed subspace which is a retract of

some neighbourhood in X then there is an exact sequence
o Ha(Y) 5 Hy(X) L Hy(X,Y) = Hy 1 (Y) >

for n > 1 where i is the inclusion Y — X and j is the quotient map X — X/Y.
Further, if Z CY C X and the closure of Z is contained within the interior of Y then Z
can be excised, meaning we can ‘cut out’ Z from Y and X, such that the relative homologies

of the pairs (X,Y) and (X/Z,Y/Z) are isomorphic.
Use can be made of such excisions to reduce homology computation time considerably.

Example 2.9. The functions used in the following extract of GAP code are described in
greater detail later in the thesis, but for the moment we informally define ChainComplex to
be a function which returns the chain complex of a CW-space, ContractibleSubcomplex
to be a function which returns a contractible subcomplex of a space and Homology to be a
function which returns the homology of a space. ChainComplex0fPair is a function which
inputs a space X and a subspace Y and returns the quotient C'(X)/C(Y) of cellular chain

complexes. More technically, given a space X and a contractible subspace Y, we can calculate

14

2.1. CW-SPACES CHAPTER 2. TESSELLATED SPACES

the homology of X by considering only those cells which are in X but not in Y. From the
GAP code, then, it is clear that the computation is substantially quicker when the chain
complex of the pair is used. This confirms what we would intuitively expect from looking
at Figure 2.2(a). There are substantially fewer coloured pixels, upon which the necessary

calculations are performed, therein than in Figure 2.1.

gap> B:=ChainComplex(A);; time;

236

gap> C:=ContractibleSubcomplex(A);;time;

68

gap> D:=ChainComplex0fPair(A,C);;time;

88

gap> for i in [0,1] do Homology(B,i);; od; time;
399537

gap> for i in [0,1] do Homology(D,i);; od; time;

460

Timings here and throughout the thesis, unless otherwise specified, are in milliseconds.

b

Figure 2.1: A space X with 4446 cells, where X = |A|.

15

2.2. TESSELLATED SPACES CHAPTER 2. TESSELLATED SPACES

)

(a) A’: A with contractible (b) 'A: The interior subcom-

subcomplex excised. plex of A which was excised.

Figure 2.2: Excision of a contractible subcomplex.

2.2 Tessellated Spaces

In this section we introduce the notions of tessellated space and pure B-complex and describe

an efficient representation.

Definition 2.10. In this thesis the term tessellated space is used to mean a regular CW-space

X such that for some n > 0
e (i) X is the union of the closures of its n-cells
e (ii) all closures of n-cells have face poset isomorphic to that of some fixed polytope.

These n-cells might all be n-simplexes, or all n-cubes, or all n-permutahedra. In this
thesis we focus on the latter two cases. We say that X has dimension n and that the closure

of any n-dimensional cell is a facet of the space. Thus X is the union of its facets.

Figure 2.3: The space on the left is regularly tessellated, with all cells having a poset with four
vertices, whereas the space on the right is not as some of its cells have posets with 3 vertices and

others have 4.

16

2.2. TESSELLATED SPACES CHAPTER 2. TESSELLATED SPACES

Restrictions (i) and (ii) make it possible to efficiently represent such spaces on a com-
puter in such a way that a quick computation yields all those facets incident with a given

facet f.

Definition 2.11. Let X be a tessellated space and let e, f be two of its facets. If e N f # ()

then e and f are neighbours. Note that f is a neighbour of itself.

The neighbourhood of a facet f in some space X is defined to be the union Nx(f) of
all neighbours of f. Let Y be a tessellated subspace of X (i.e. some union of facets of X).
The neighbourhood of Y is defined to be the union Nx(Y') of all the neighbourhoods Nx(f)
of facets f of Y. Note that Nx(Y) is again a tessellated subspace of X.

A tessellated space is finite if it has only finitely many facets.

A finite pure simplicial complex is an example of a tessellated space and Algorithms 2.4
and 2.5 are theoretically applicable, but the representation is not efficient as the computation
of the contact complex of an n-simplex would be expensive.

An analogous representation of a CW-subspace X C IV, where I is the unit interval, is
described at the end of Chapter 3. There, X is represented as a finite collection of pairs of
subsets K = {7 C o} where 7, ¢ are subsets of the set S = {1,...,2"} with |7 — | = n having
a geometric realisation as an n-cube. As with the simplicial complex, though mathematically
faithful, this representation is not computationally efficient.

The notion of a B-complex, which we explain in Definition 2.13, lends itself well to the

application of the aforementioned algorithms.

Definition 2.12. A binary array of dimension 1 is a list b = [z, z2,...,x,| where each z;
is either 0 or 1. The array size of b is defined to be the singleton [n]. A binary array of
dimension d > 1 is a list [z, z9,...,x,] where each z; is a binary array of dimension d — 1
and all x; have the same array size. The array size of b here is defined to be the list of integers

got by appending the array size of z; to [n].

For some set of points P = p1,pa,... in R”, we use Dirichlet-Voronoi cell to mean the

17

2.2. TESSELLATED SPACES CHAPTER 2. TESSELLATED SPACES

region described by

D(pi) = {x € R" : [|p; — z|| < ||pj — «|| for any p; € P}.

Figure 2.4: Dirichlet-Voronoi diagram for a set of points in the plane.

Let L be a lattice in R", ie. an additive subgroup generated by n linearly independent
vectors in R™. [9] Each point v € L determines a Dirichlet-Voronoi cell, discussed in more
detail in [40], and Euclidean space R™ can be assigned the structure of a tessellated space

whose facets are these cells, D(v). This tessellated space is denoted by R .

Figure 2.5: A tessellation of simplices can not be assigned a lattice structure but a cubical tessellation

can, lending itself to a simple representation as a binary array

Definition 2.13. A pure B-complex K = (A, B,T) consists of
e a binary array A = (a)) of dimension d,
e abasis T = {t1,to,...,14} for R%,

e a finite set B C Z%. We call B the ball.

18

2.2. TESSELLATED SPACES CHAPTER 2. TESSELLATED SPACES

Definition 2.14. Given some A\ € Z? such that ay = 1 we define the neighbourhood N (ay)

to be the union of ayyp : b € B.

Every pure B-complex provides a lattice structure which corresponds to the tessellated
space X C R with facets D(A1t1 + Aata + ... 4+ Agtg) for all A with ky = 1, where D(v) is a
Dirichlet-Voronoi cell. In Example 2.15, the basis used is (1,0),(0,1), and the entry, a3),
for example, in A has value 1, giving ¢; = (1,0),%2 = (0,1), \; = 3, A2 = 2. The facet defined

by the Dirichlet-Voronoi cell D(3 * (1,0) + 2% (0, 1)), ie. D(3,2) is therefore present in X.

Example 2.15. Here the pure B-complex K with binary array A has basis (1,0), (0, 1).

1 I R

Figure 2.6: |[K| =X C R™.

Figure 2.6 has binary array

1 11

1 00
A=

1 11

0 01

From such a binary array representation we can easily compute the neighbourhood of
any facet and thus directly compute the number of path components. The following algorithm

can be used.

Algorithm 2.16. Path Components
Input: A finite tessellated space X represented in such a way that the neighbours can be

easily computed.

19

2.3. PERSISTENT HOMOLOGY CHAPTER 2. TESSELLATED SPACES

Output: A list X1, ..., X, of the path components of X.
Procedure:
Initialise ¢ := 0
Deem all facets of X to be uncoloured
while there exists an uncoloured facet of X do
Set ¢c:=c+ 1.
Choose some uncoloured facet g and assign it the colour c.
while there exists some uncoloured facet f in the neighbourhood of a facet
g of colour ¢ do
Assign the colour ¢ to f.
end while
end while

For 0 < i < clet X; be the union of the facets of colour i.

Chapter 3 of this thesis focuses on cubically tessellated spaces which are B-complexes
with orthonormal basis, Chapter 4 on permutahedrally tessellated spaces which are B-complexes
with a certain other basis which is described in that chapter, and Chapter 5 deals with the
computational implementation of functions for objects with either cubical or permutahedral

lattice structure.

2.3 Persistent Homology

In this section we show how our methods can be used to calculate persistent homology, after

Carlsson et al. [7]

Algorithm 2.17. Thickened Pure Complex

Input: A pure complex K.

Output: A pure complex L such that for any entry 1 in the pure complex K all neighbouring
entries of the corresponding entries in L equal 1.

Procedure:

Initialise L := K

20

2.3. PERSISTENT HOMOLOGY CHAPTER 2. TESSELLATED SPACES

for k, =1 do
for k., € Nk (ky) do
Set l,, = 1.
end for

end for

Example 2.18. Figure 2.7 shows a number of iterations of the thickening algorithm over a
set of points X7 sampled from some space and the table below shows the Betti numbers of
the space after each thickening. It may be easy for a human to interpret from the graphical
representation X7 that the data is sampled from a space with a single path component and
two 1-dimensional holes, which would seem to fit with the computer’s result that after a
number of thickenings the number of 1-dimensional holes settles down to 2 for a considerable
number of iterations. The Betti numbers at the nth of these iterations are shown in Table
2.1.

Remark: Our method of thickening, using neighbourhoods, provides a certain consistency
and gives us more control over the filtration than we would have if we were thickening using

simplicial complexes, for example.

X7 X9 X5

Figure 2.7: A selection of thickenings of X;.

However, when attempting to interpret the homology type of the original space from

21

2.3. PERSISTENT HOMOLOGY CHAPTER 2. TESSELLATED SPACES

Table 2.1: §,(X) at various thickenings.

ﬁn Xl X3 X5 X? Xg X15
Bo | 3019 | 16 11 | 10 | 8 1
61| 175 | 1201 | 171 | 7 2

which the data were sampled the Betti numbers can be unreliable as they fail to capture a
lot of the information. See Figure 2.8 for an example where one hole is created as another is

destroyed, leaving the Betti number unchanged.

To identify when holes persist, are created, or are destroyed within a sequence of subsets

of a space we analyse the persistent homology [44] of a space.

Figure 2.8: The space on the left, X has $; = 2. The space on the right, Thickened(X) has 5, = 2

also, hiding the creation and destruction of holes.

The table in Example 2.18 gives only a partial indication of homological persistence.
While it shows, for example, that H;(X5,A) is generated by 171 independent cycles and
Hy(X7,A) is generated by 7 cycles, it does not indicate how many of the 171 cycles lie in
the kernel of the induced homology homomorphism H;(X5,A) — H; (X7, A), that is, it does
not show whether the 7 holes are newly created or have persisted through the thickening.
Let X1 € X9 C X3 C ... be a sequence of inclusions of finite tessellated spaces. In order to

determine the persistence Betti numbers ﬂ;;j we
1. Compute the induced homology homomorphisms ¢; ;41 : Hg(X;) — Hp(Xi41);

2. Use standard linear algebra algorithms to compute the composite homomorphisms ¢; ; =

Li—1,55b5—2,5—15 5 bi+1,i+25 Lii+1 and then

22

2.3. PERSISTENT HOMOLOGY CHAPTER 2. TESSELLATED SPACES

3. Determine ﬂ,? as the rank of the homomorphisms ¢; ;.

For an abelian group A any sequence of inclusions of CW-subspaces
XiCXoCX3C...CX,
induces a sequence of chain maps
Ci(X1,A) = Ciu(X2,A) — Cu(X3,A) — ... — C (X4, A)
which in turn induce a sequence of homology homomorphisms
H,(X1,A) —» Hy(X2,A) —» Hy(X3,A) — ... Hy (X4, A)

for each n > 0 [12].

Definition 2.19. For a sequence of inclusions of CW-subspaces X; C X5... C X; and each
n > 0 we define the nth persistence matriz over A to be the t x t integer matrix P, = (pi;)
where

pij = dlm(lmage(Hn(Xl, A)) — Hn(Xj, A))

for 1 < j, and

pij =0

for ¢ > j.

Following the work of Carlsson et al. [7] the matrix (p;/) is represented by a graph called
a bar code which has horizontal edges and vertices arranged in columns. The i** column has
P = B, (X;) vertices and there are pilj paths from the i** to the j** column. The 3; bar code
for Example 2.18 is partially illustrated in Figure 2.9. Owing to the size of the bar code we
have labelled each row with an integer indicating the number of repetitions thereof.
The pair of long horizontal paths in Figure 2.9 indicate that there are two 1-dimensional

homology generators that persist from X3 to X5, suggesting two significant 1-dimensional

23

2.3. PERSISTENT HOMOLOGY CHAPTER 2. TESSELLATED SPACES

holes, which is consistent with the homology of a space comprising a single path component

with two 1-dimensional holes.
i b
. 47

+ 1077

«174

—a]

Figure 2.9: The barcode for §1(X) in Example 2.18

In Figure 2.10, the bar code for Figure 2.8 the destruction and creation of holes, which

one could not infer from the Betti numbers alone, is clearly visible.

—r—

Figure 2.10: The persistent bar code indicates the creation of one hole and the destruction of another

midway during the sequence for Figure 2.8.

One of the aims of this thesis is the computation of persistence Betti numbers and
homology homomorphisms arising from a sequence of inclusions of tessellated spaces. The
approach used here differs from the classical algorithm of Zomorodian and Carlsson [44] as we
focus on tessellated spaces and make use of their special structure for our computations. From
Example 2.18 one can see how the obvious approach to homology computation might run into
difficulties. Consider for example the space Xg. Using the basis (0, 1), (1,0) it involves 279550
2-dimensional facets, 561088 1-dimensional edges, and 281544 0O-dimensional vertices. How

we obtain these is described in Chapter 3. In its chain complex

Ca(Xo) 25 C1(Xo) 25 Co(Xo)

24

2.4. POSITIVE NEIGHBOURHOODS CHAPTER 2. TESSELLATED SPACES

the boundary homomorphism ds is represented by a 561088 x 281544 matrix, and the boundary

homomorphism §; is represented by a 279550 x 561088 matrix. A direct computation of
ker(&l)

image(d2)

and liable to ‘blow up’ [11]. As part of this thesis we implement a number of methods which

Hy(Xy,Z) = using the Smith-Normal form algorithm would be time consuming,

aim to efficiently compute the homology of regular tessellated spaces of up to dimension 4.

2.4 Positive Neighbourhoods

In this section we explain how our representation allows for the creation of efficient redundancy

tests.

Definition 2.20. The complementary neighbourhood of a facet f in X is NX(f) = Nx(f)\f.
The complementary neighbourhood N Kk (kx) =1 of an entry ky in the binary array of a pure
B-complex K is Ng(ky) but with kx = 0. A neighbourhood is defined to be positive if the

complementary neighbourhood is a homotopy retract thereof.

(a) The neighbourhood on the left is pos- (b) The neighbourhood on the left is not
itive as its homology remains the same positive as its homology changes when
when the central facet is removed. the central facet is removed.

Figure 2.11: Positivity in a pure B-complex with basis (0, 1), (1,0).

For some lattices the number of possible combinatorial types of positive neighbourhoods
is quite small and one can pre-compute a list of them. In R (a subspace of R"™ with cubical
tessellation - further discussed in chapter 3): 2 of the 4 possible combinatorial types in Re;
116 of the 256 possible combinatorial types in R2, , and 41123720 of the 67108864 possible
combinatorial types in R?é are positive. For higher dimensions the list becomes too big to

store. The notation IL{ is used to mean the list of positive neighbourhoods in n-dimensional

25

2.4. POSITIVE NEIGHBOURHOODS CHAPTER 2. TESSELLATED SPACES

cubical space.
This list can then be used in algorithms such as the following, which correspond to Algorithms

2.4 and 2.5 for CW-spaces in general:

Algorithm 2.21. Homotopy Equivalent Minimal Pure Subcomplex

Input: A pure B-complex K and a subcomplex J C K. X = |K| and W = |J|.

Output: A pure B-complex L, where the entry with coordinates A is denoted by [y, where
Y = |L| such that Y is a homotopy retract of X which contains W and from which no further
facets can be removed without affecting these properties.

Procedure:

Initialise L := K

Let L = L! .binaryArray,J = J!.binaryArray

while L — J has an entry (L — J), = 1 with Nz (\) € L do
Set [, =0

end while

Return the pure B-complex with binary array L.
Example 2.22. The application of this algorithm can be seen in Figure 2.12.

Remark: The order in which cells are traversed can affect the returned complex, though
the homotopy type will be the same for any progression. This order is not randomised, but
can be changed in the implementation. In Figure 2.13(b) the first figure is the retraction
of X in Figure 2.13(a) when it has been traversed from left to right then top to bottom
by the retraction algorithm, whereas the second figure is the retraction when X has been
traversed from right to left and bottom to top. In the third image the retraction alternates
between moving left to right and top to bottom and right to left and bottom to top; switching
between the two every time a positive cell is found. There is no traversal method which is
guaranteed to be most efficient in all cases. The default traversal in HAP is the third of the
above examples. The homotopy type of all three retractions are the same no matter which

retraction is chosen.

26

2.4. POSITIVE NEIGHBOURHOODS CHAPTER 2. TESSELLATED SPACES

(a) A tessellated space X. (b) AC X.

(¢) The corresponding pure cubical
space of the homotopy equivalent min-

imal pure subcomplex of X containing
A.

Figure 2.12: Example of a homotopy equivalent minimal pure subcomplex.

Algorithm 2.23. Homotopy Equivalent Maximal Pure Subcomplex
Input: A pure B-complex K and a subcomplex J C K. X = |K| and W = |J|.
Output: A pure B-complex L where Y = |L| such that Y C X and contains W as a homotopy
retract and to which no further facets can be added without affecting these properties.
Procedure:

Initialise L := J

Let L := L!.binaryArray, J := J!.binaryArray, K := K! .binaryArray

while K — L has an entry (K — L)y = 1 such that Ng()\) € L do

Set [y =1
end while

Return the pure B-complex with binary array L.

27

2.4. POSITIVE NEIGHBOURHOODS CHAPTER 2. TESSELLATED SPACES

(a) The space X and A C X

(b) Three retractions of X containing A using differ-
ent traversals of X

Figure 2.13: Different orders for traversing a complex can return different retracts, but all of the
same homotopy type.

(a) A tessellated space X. b YCX

(c) A subspace of X which is homotopy

equivalent to Y.

Figure 2.14: Example of homotopy equivalent maximal pure subcomplex implementation.

Example 2.24. We can see from Figure 2.14 how the resulting complex is a single path com-

28

2.5. ZIG-ZAG RETRACTION CHAPTER 2. TESSELLATED SPACES

Figure 2.15: Z = |L| where L = Contracted Complex(K)

ponent with no holes. (Note: there is a line connecting the apparent ‘holes’ in the complex

to the outside, but it may not be very visible, as the width of this path is only that of one pixel.)

For a given pure B-complex K Algorithm 2.23 can be used to calculate a contractible
subcomplex L of K. The interior of this L can then be excised as in Example 2.9, making the
calculation of the relative homology significantly more efficient than simply calculating the
homology of K. In Example 2.24, the chain complex of A comprised 257028 0-cells, 512358
1-cells and 255329 2-cells, whereas the relative chain complex of the pair comprised 2483
0-cells, 5339 1-cells and 2854 2-cells.

Letting the subcomplex of J for Algorithm 2.21 be the subcomplex with all zero entries
allows for the retraction of any entry with positive neighbourhood in K, giving a pure complex
such that no further entries can be changed to 0 without changing the homotopy type of the
space associated with K. Homology computations using a contracted complex are much more
efficient. See Figure 2.15 where Z is homotopy equivalent to X in Figure 2.14, but whereas

K contains 255329 facets, L contains only 1396 facets.

2.5 Zig-zag retraction

In this section we introduce a new method for producing a homotopy retract of cellular spaces

of low dimension.

We define a bounding space for X to be a contractible space containing X. To construct a

29

2.5. ZIG-ZAG RETRACTION CHAPTER 2. TESSELLATED SPACES

bounding space for an n-dimensional space X with corresponding binary array A, we consider
all ay = 1. Then we find the entry a + (m1,ma,...,my), where m; is the minimal value of
each A;. We also find the entry a(a, ... m,) Where the M; are the maximal values. Then
every entry a,, ,,. ..p,) i which any m; < p; < M; in the bounding space is assigned to be

1. See Fig. 2.16 for an example.

(a) X. b)Y

Figure 2.16: Y is a bounding space for X

A zig-zag retract [14] of a space X is a space Y such that

X=By«— Al > B+ Ay > By« ... B 1« A, =Y,

where B is some bounding space for X. A sequence of combinations of algorithms may be used
to find zig-zag retracts which are smaller than actual retracts. To produce a zig-zag retract
of X = By Algorithm 2.21 can be used to produce a retract A;. Then a small bounding space
Ay C Bj is constructed, and using Algorithm 2.23 a subspace By C Bj is computed, which
is maximal with respect to containing A; as a homtopy retract. Then Algorithm 2.21 can be
used to find a retract As C Bj. This process can be repeated. This leads to a smaller (or

equal) retract than simply contracting a space. See Fig. 2.17 and Example 2.25.

30

2.5. ZIG-ZAG RETRACTION CHAPTER 2. TESSELLATED SPACES

(a) A subcomplex, W, (b) A homotopy equiva-
of Y which is homotopy lent retract of W.

equivalent to X.

Figure 2.17: Finding a zig-zag retract of X from Fig. 2.16

Example 2.25. Given below is the binary array K, where ZZ = |K]| is zig-zag retract of X

in Figure 2.15, as ZZ is too small to view.

01010
K'=110101
01010

Example 2.26. This extract of GAP code illustrates some difference in the output from the
ContractedComplex and ZigZagRetractOfPureCubicalComplex functions. Some extra cells
may be removed with zig-zag retraction, which takes slightly longer but this can lead to a

significant improvement in homology computation times.

31

2.5. ZIG-ZAG RETRACTION CHAPTER 2. TESSELLATED SPACES

gap> A:=List([1..100],i->1);;

gap> A:=List([1..100],i->StructuralCopy(A));;
gap> A:=List([1..100],i->StructuralCopy(A));;
gap> A[50] [50] [60]:=0;;

gap> P:=PureCubicalComplex(A);;

gap> Size(P);

999999

gap> ZZ:=ZigZagContractedPureCubicalComplex(P); ;time;
15652

gap> Size(ZZ);

6

gap> C:=ContractedComplex(P);;time;

8724

gap> Size(C);

6

In the above GAP session extract, the ContractedComplex is more efficient as it is faster
and removes just as many cells as the ZigZagContractedPureCubicalComplex. Amending
the complex slightly, as below, the zig-zag retraction is much more efficient, as while it takes
slightly longer it removes substantially more cells, making succeeding computations on the

complex simpler.

32

2.6. DISCRETE MORSE THEORY CHAPTER 2. TESSELLATED SPACES

gap> A[70][38][29]:=0;;A[391[17][94]:=0;;

gap> P:=PureCubicalComplex(A);;

gap> Size(P);

999997

gap> ZZ:=ZigZagContractedPureCubicalComplex(P);;time;
15329

gap> Size(ZZ);

27

gap> C:=ContractedComplex(P);;time;

9221

gap> Size(C);

217

gap> F:=ChainComplex(ZZ);;time;

8

gap> G:=ChainComplex(C);;time;

6389

gap> for i in [0..3] do Print(Homology(F,i),"\n");od;time;
tol,f 1,00, 0,0],[]

400

gap> for i in [0..3] do Print(Homology(G,i),"\n");od;time;

tol,f1,00,0,01,[]

29990

2.6 Discrete Morse theory

A further algorithm for finding homotopy retracts of CW-spaces can be effectively described
using discrete Morse theory [18]. A discrete vector field on a regular CW-space X is a

collection of arrows « : s — ¢ where

1. s,t are cells and any cell is involved in at most one arrow;

2. dim(t)=dim(s) + 1;

33

2.6. DISCRETE MORSE THEORY CHAPTER 2. TESSELLATED SPACES

S e S S

0

s —o o ®~

&

Figure 2.18: A discrete vector field on a cubical complex and a homotopy retract thereof.

3. s lies in the boundary of t.

A sequence of arrows agq : 81 — t1,q9 : So — t9,... in a vector field is a path if
1. the s; are cells of common dimension d and the ¢; are cells of common dimension d + 1.
2. each s;y1 lies in the boundary of ¢;.

A discrete vector field is said to be admissible if it contains no infinite path of arrows and no
finite cycles. The example in Figure 2.18 is admissible. An arrow s — t involves the cells s, t.
A cell is critical if it is involved in no arrows of the vector field.

From [19] we take this “fundamental theorem” of discrete Morse theory:

Theorem 2.27. If X is a reqular CW-space with an admissible discrete vector field then there
is a homotopy equivalence

X~Y

where Y is a CW-space whose cells are in one-to-one correspondance with the critical cells of

X.

In order to create a discrete vector field on a space X, a pair (s,t) of cells is defined to

be X-free if
1. dim(¢) =dim(s + 1);
2. s lies in the boundary of ¢ but in the boundary of no other cell in X.

Then, to form a CW-retract of X, we assign the trivial vector field, involving no arrows, to

X' which is a copy of X we shall manipulate to find a homotopy retract. While there exists

34

2.6. DISCRETE MORSE THEORY CHAPTER 2. TESSELLATED SPACES

an X'-free pair (s,t) in X', the arrow s — t is added to the vector field on X’. Eventually,
this leaves an admissible discrete vector field to which no more arrows can be added, and the
remaining, critical cells provide a C'W-space which is homotopy equivalent to X.

It can often be more efficient to use a combination of a tessellated retraction and discrete
Morse theory than to use either on their own. Consider Example 2.28 where a cubically
tessellated space is contracted efficiently, and discrete Morse theory is then used to contract

the space even further, minimising computations necessary to calculate the homology.

Example 2.28. To find a retraction of X.

X

35

2.6. DISCRETE MORSE THEORY CHAPTER 2. TESSELLATED SPACES

[S—1
—

¢ — ¢
(a) First, the space is con- (b) A discrete vector field
tracted using the standard is then assigned.

contraction for pure B-

complexes.

(¢) Retract
using Dis-
crete Morse

theory.

Figure 2.19: Contracting X, first by contracting the complex and then using Discrete Morse theory.

The chain complex for the discrete vector field is considerably smaller than the chain
complex of the space which was just cubically contracted. The pure complex contraction,

however, is much faster at removing large quantities of non-essential facets.

This method can also be combined with the zig-zag retraction method to provide a ho-
motopically equivalent but much smaller chain complex. The zig-zag retracted pure complex
in Example 2.25 could, for example, be assigned a discrete vector field as illustrated in Figure

2.20:

36

2.6. DISCRETE MORSE THEORY CHAPTER 2. TESSELLATED SPACES

——0
b —v

4 e " e

(a) A discrete vector field on the
contracted complex in Example

2.25

(b)

Figure 2.20: Zig-zag retract of Example 2.25

The following GAP code extract provides another example of how the retractions for
pure complexes and discrete Morse theory method for calculating the critical cells of a regular
CW space can be effectively combined. As part of this computation the Céch complez, as
explained in Definition 1.30 of the pure cubical complex is calculated. The Céch complex
of a pure cubical complex is a simplicial complex such that it contains one vertex for every
cell in the pure complex, one edge for the non-empty intersection of any two cells in the pure
complex, and in general there is one k-cell in the Céch complex for the non-empty intersection

of any k + 1 cells in the pure complex.

37

2.6. DISCRETE MORSE THEORY CHAPTER 2. TESSELLATED SPACES

gap> A:=List([1..15],i->1);;

gap> A:=List([1..15],i->StructuralCopy(A));;
gap> A:=List([1..15],i->StructuralCopy(A));;
gap> A[6][6][6]:=0;;

gap> M:=PureCubicalComplex(A);;

gap> S:=C&chComplex0fPureCubicalComplex(M);;
gap> List([0..7],i->S!.nrSimplices(i));

gap> [3374,38040,122956,184168,153384,76664,21896,2736]
gap> Y:=SimplicialComplexToRegularCWSpace(S);;
gap> Size(Y);

603218

CriticalCellsOfRegularCWSpace(Y) ;time;

[[2, 19330], [0, 2140]]

29234

In the preceding segment the critical cells were calculated directly from the original
complex, giving one 2-dimensional cell, the 19330th, and one 0-dimensional cell the 2140th,
in just under half a minute. A contraction of the complex before assigning the discrete vector

field is considerably faster.

gap> Size(M);

3374

gap> N:=ContractedComplex (M) ;;time;
28

gap> Size(N);

6

Once all cells with positive neighbourhoods have been removed, a discrete vector field

can be assigned to the remaining cells in the space.

38

2.7. SINGULARITIES CHAPTER 2. TESSELLATED SPACES

gap> S:=C&chComplex0fPureCubicalComplex(N) ;;
gap> Y:=SimplicialComplexToRegularCWSpace(S);;
gap> Size(Y);

26

gap> C:=CriticalCellsOfRegularCWSpace(Y);; time;
0

C;

([2,11,[0,5]]

Again we have one 2-dimensional cell and one 0-dimensional cell.

2.7 Singularities

Homological properties alone are not always sufficient to distinguish two spaces. In Figure
2.21 we have two spaces which are both homotopy equivalent to a point.

Let X and Y C X be tessellated subspaces. The complement of Y is the tessellated
subspace X — Y which consists of the union of facets in X but not in Y. By the boundary of
Y we mean the tessellated subspace 0Y consisting of the union of the facets f in Y such that
Nx(f)NX —Y # 0. The tessellated subspace Y — 0Y, we call the interior of Y. Size(Y)

denotes the number of facets in Y.

Definition 2.29. Given a facet f in X and an integer » > 1 we define the ball of radius r
centred at f to be the tessellated subspace B(r, f) = Nx(Bx(r — 1, f)) where Bx (1, f) =
Nx(f), and the sphere of radius r centred at f to be the tessellated subspace Sx(r, f) =

0Bx(r, f).

Definition 2.30. Given an integer » > 1 and number 0 < 7 < 1 we say that a facet f
of the tessellated space Y C X is (r,7)-smooth if either f lies in the interior of ¥ or else

the complement Sx(r, f) — dY consists of exactly two contractible path-components C1, Co

39

2.7. SINGULARITIES CHAPTER 2. TESSELLATED SPACES

satisfying
Size(Cl) - Size(C'g)
Size(Cl) + SiZG(CQ)

< T.

We say that f € Y is (r,7)-singular if it is not (r,7)-smooth. Note that to verify that there
are two contractible path components it suffices to check that 5;(Sx(r, f) —dY)=2if i =0

and is 0 otherwise.

Figure 2.21: Two polygonal disks, their singularities, and thickened singularities

The two polygonal disks in Figure 2.21 were represented as 2-dimensional pure cubical
complexes with 14316 and 13795 facets respectively. Shown are the pure cubical subcomplexes
consisting of the (5,0.15)-singular facets and thickenings of both of those subcomplexes. The
persistence bar codes were constructed for a series of thickenings and showed that there are

six and eight path components respectively for the two polygons.

40

3 Cubical Complexes

This chapter deals with subspaces of the tessellated space Ry, whose structure is inherited from
the lattice generated by n orthonormal basis vectors. A facet of R is combinatorially equiv-
alent to an n-cube. In this chapter some theory is developed for abstract cubical complexes,
cubical complexes and pure cubical complexes which are based on such tessellations.

Pure cubical complexes deal only with cubes of common dimension, which simplifies
the representation and relevant algorithms. Cubical complexes deal with cubes of many
dimensions, which makes the representation and algorithms more complicated than for pure
cubical complexes, but are necessary because the distinction between edges, vertices, etc.
needs to be made for homology computations etc. Abstract cubical complexes can prove

more efficient in sparse or higher-dimensional data sets.

3.1 Pure cubical complexes

Recall that the n-dimensional cubical lattice L is an additive subgroup generated by n
orthonormal vectors in R", where any v € L, determines a Dirichlet-Voronoi cell

D(w)={zx e R": ||v—z|| <||w—z|| for any w € L}
from which Euclidean space R™ inherits the structure of a tessellated space whose facets are
the cells D(v). This tessellated space is denoted by R¢.

Definition 3.1. A pure cubical space X is a tessellated subspace of R,. The dimensions
of X is a list of lengths, [d1,ds,...,d,], where d; is the maximal difference between the i

coordinates of any two points in X. By applying a translation if necessary we can assume that

41

3.2. CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

X is a union of translations of facets D(v) where any v has only positive integer coordinates

with respect to the given basis.

Definition 3.2. Recall our Definition 2.13 of a pure B-complex. An n-dimensional pure

cubical complex K is a pure B-complex with orthonormal basis vectors, (t1,t2,...,t,).

Let T" be the set of all kK = (k1,K2,...,Kn) Where k; € {—1,0,1}. The neighbourhood
Ng (ky) of an entry k) in an n-dimensional pure cubical complex K consists of all entries kj
for k € T'. The neighbourhood Nx(zx)) of a facet x) in an n-dimensional pure cubical space
consists of the union of all facets x4, in Rf. Previously described algorithms for tessellated
spaces can be applied to pure cubical complexes. In Example 3.3 we use Algorithm 2.17 to

thicken a pure cubical complex K and its corresponding pure cubical space Xj.

Example 3.3. An illustration of two iterations of Algorithm 2.17 over a pure cubical complex

K.
AR Yoty ThiE s SR VRSN I pets pbalen ¥arte it oot Bt : Gbbak hetindes teleiaas S Wik (ke ety oot prpca s st et
1 1 1 1 I 1 1 I 1 1 I 1 I 1 1 1 1 I I 1 I
[N, W | B || SO . S N - S— S S . B
] T 1 T T I 1 T] T I 1 T
] I] 1 | I 1 1 I D 1 I | 1
: b o Bl el ol e cesd e
1 | 1 1 I 1 1 1 I
i il . D I T [T
: : | e . .
=== T r-T°Tr—- ___T___I—__—I___T___Jl_ ___I—__—I___T___Jl_ 1
BN MERN R P
dpmaclusmghe il i LEE Tk M e s SR [el D e Ry
1 1 1 1 1 1 1 1 N I 1 1 1 1 3 1 1 3
belieolloodlbe I oo llunello . Bonaoclio sl fnsion 2 atbndbon I
(a) Xo (b) X (c) Xz
Figure 3.1: An illustration of ThickenedPureCubicalComplex
0 o 0 O 0O 0 0 O 0o o0 0 o 0 O 0 o 0 O 1 1 1 1 1 1 1 o 0 O 1
0 o 0 O 0O 0 0 O 0 1 1 1 1 0 0 o 0 O 1 1 1 1 1 1 1 1 1 1 1
1 1 0 O 0O 0 0 O 0o o0 1 1 1 1 1 1 0 O 1 1 1 1 1 1 1 1 1 1 1
0 1 0 O 1 0O 0 0 0o o0 1 1 1 1 1 1 0 O 0o o0 1 1 1 1 1 1 1 1 1
0 o 0 O 1 0O 0 0 0o o0 0 1 1 1 1 1 0 O 0o o0 1 1 1 1 1 1 1 0 0
0 o 0 O 1 0O 0 0 0o o0 0 0o o0 1 1 1 0 O 0o o0 1 1 1 1 1 1 1 0 0
Ky K, Ky

3.2 Cubical complexes

To calculate the homology of a pure cubical complex or space it is necessary, as with sim-

plicial complexes, to determine which (m — 1)-cells form the boundary of which m-cells.

42

©c o~ R = B

3.2. CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

As d-dimensional pure cubical complexes and pure cubical spaces restrict themselves to d-
dimensional facets only, the notion of cubical complexes and cubical spaces is introduced. We
use Example 3.4 as an illustration of the process of converting a pure cubical complex, which
represents a collection of facets, into the corresponding cubical complex where the entries

represent (O-cubes, 1-cubes and 2-cubes.

Example 3.4. In this example a pure cubical complex K, where X = |K], is converted to a

cubical complex K’ using Algorithm 3.9, detailed below.

(a) X () X"

Figure 3.2: A pure cubical space X, the separation X’ of pure cubes into 0-cubes, 1-cubes and 2-
cubes, and as a cubical space X’ which illustrates how each cell corresponds to an entry ‘1’ in the

cubical complex K’.

1 11 1111111
1 01 1110111
1 10 1111111

1111100
K K’

The pure cubical complex consists of 7 facets, whereas the corresponding cubical com-

plex consists of 44 cells: seven 2-cells (blue), twenty-two 1-cells (green) and fifteen O-cells

(red). Implementations for pure cubical complexes are usually more efficient, though there

are some cases in which cubical complexes must be used. Calculating the chain complex, for

43

3.2. CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

example, requires the use of cubical complexes, but in general it is preferable to use pure
cubical complexes where possible. Not all cubical complexes have corresponding pure cubical

complexes.

Definition 3.5. A cubical complex K of dimension d is a binary array with index A ranging

over the set
A={1,2,....2n1+1} x {1,2,...,2n0 +1} x ... x {1,2,...,2ng+ 1} c N¢

that arises from a CW-subspace of a pure cubical complex as illustrated in Example 3.4.

The dimensions of K are the integer vector (2n; + 1,2ns + 1,...,2ng + 1). There is
one axiom: if some entry k) = 1 then the entry k), = 1, where X € A is obtained by adding
41 to an even entry in the index A.

We define £(\) to be the number of even entries in \.

Definition 3.6. A cubical space X C R} is a CW-subspace. The cell x of X is a {(\)-cube
of the d-cubes x4, present in X in RY% where x € [—1,0,1]" such that £(x + A\) = d. By

[—1,0,1]™ we mean all possible lists of length n with entries chosen from [—1,0, 1].

Example 3.7. A cell z(35 7) in R% is a vertex of X. Tt is a O-cell of the 1-cells z(3 5 7), ©(3.4,7), T(35,6)
T(35,8), T(3,6,7)> T(4,5,7)> Of the 2-cells T2 4 7), T(2,56); T(2,5,8) T(2,6,7) T(3,4,6)» T(3,4,8)> T(3,6,6)s L(3,6,8)
T(4,4,7)5 T(4,5,6)> T(4,5,8) T(4,6,7), and of the 3-cells (3 4 6), T(2,4,8)s T(2,6,6)» T(2,6,8) T(4,4,6)s L(4,4,8)>

Z(4,6,6)> L(4,6,8)

Figure 3.3 shows twelve 2-cells which share a common vertex.

44

3.2. CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

Pl
E
i '
1 L]
1 .
1 -
Il
e T |TF TS
" ' g

f = .

-, 1 ! +
, 2 1 +F
J_--_.I'{..:_.f'

N
' iy
—-

Figure 3.3: A 0-cell of twelve 2-cells in R3.

An n-dimensional cubical complex K can be geometrically realised as a cubical space

|K| = X C RE where) = 1 if and only if ky = 1 and the £(A)-cell
D(v) = {x € R" where |[v — z|| < |[v £ w — z|| for any w € {0,1}"} with £(v) = &(N),

where v = (A1t1 + \ate + ... + Apty) and the t; are the orthonormal basis vectors.

Example 3.8. The cubical complex with binary array K

1111100
K=f1110100

1111111

Figure 3.4: X: the corresponding cubical space for K.

has one 2-cell at kyg 9y, seven 1-cells at kg 9y, k141, K{1,6), K21y, K(2,3), k{2,5}

k(3.2y: k(3.4), k(3,6) and seven O-cells at ki 1y, k1 3y, k{15y, k(3,13 k(3.3) F(3,5)» k3,73 -

45

3.2. CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

While they have a similar representation, it is important to note the difference between
a pure cubical complex or pure cubical space and a cubical complex or cubical space respec-
tively. In a d-dimensional pure cubical complex, k) represents a d-cell, while k) in a cubical
complex represents a £(A)-cell. Any d-dimensional pure cubical complex K can be converted

to a cubical complex K’ as illustrated in Algorithm 3.9.

Algorithm 3.9. Pure Cubical Complex to Cubical Complex
Input: A pure cubical complex K.
Output: A cubical complex K'.
Procedure:
if K has dimensions (nj,ng,...,ng) then let K’ be a cubical complex with
dimensions (2ny + 1,2ny + 1,...,2n4s + 1).
for \in A do
for k € [-1,0,1]" do
Set ky = 1 precisely if ky =1 and § = 2\ + k.
end for

end for

An m-cell k) in an n-dimensional cubical complex with coordinates (A1, A2, ..., A,) has
m entries A; which are even integers. The boundary of such an m-cell is the sum of the
(m — 1)-cells of K which are obtained by adding 1 to exactly one even entry in k) less the

sum of the (m — 1)-cells of K obtained by subtracting 1 from exactly one even entry in k.

To calculate the homology of the pure cubical complex K, it is first converted to the
cubical complex K’. The free abelian groups in the sequence for the chain complex are given
by an ordered list of the 2-cells, 1-cells and 0-cells. In Figure 3.2 one can see that the boundary
of the dark blue 2-cells, such as those with coordinates (2,2), (2,4), (3,2) are the respective
adjacent green 1-cells, such as (1,2),(2,1),(3,6). The boundary of the 1-cells are the red 0-
cells, which have only odd coordinates, such as (1,1),(3,7), (7,5). The homology is calculated

from the chain complex as described in chapter 1.

46

3.3. ABSTRACT CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

3.3 Abstract cubical complexes

Let S be a set. An S-pair is a pair P = (P;, P») of subsets of S such that P, C P;. Associated
to an S-pair P is the lattice of all subsets of P; containing Ps; inclusion is the partial order.

Given an S-pair P and an element x € P\ P,, define

e 6 (P)= (P, P,U{x})

o 0, (P) = (P\{z}, P»)

Definition 3.10. An abstract cubical complex [17] consists of an ordered set S together with

a set J of S-pairs satisfying the following condition:
PeJ=6(P)eJand§, (P)eJ foral x € P\P.

A pair P in J has dimension |P;| — |P|, where |P;| is the cardinality of |P;|.

Definition 3.11. The chain complex of an abstract cubical complex is the sequence of free
abelian groups

s Co(T) 2 O () 2 0 o ()

where C,,(J) is the free abelian group on the n-dimensional pairs in J and the boundary
homomorphism 6y, : Cy,(J) — Cp—1(J) is defined on each n-dimensional pair P = (Py, P») by

the formula

u(P)= Y (F1)'(65(P) — 6, (P)).

2, €P1\ Py
Lemma 3.12. For any pair of entries x,y in an ordered set S, the resulting set after the re-
moval of x and y is the same, irrespective of the order in which they were removed. Therefore,
1gnoring signs,

S =610
y “x T

y’
8, 04 =610,
6,0, =650,

47

3.3. ABSTRACT CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

5,8, = 38,6,

Theorem 3.13. The composition of any two consecutive boundary homomorphisms in the

chain complex of an abstract cubical complex 6, 0 61 = 0.

Proof. Working mod 2 and ignoring signs, we can write the boundary homomorphism as

5(P)y= > (65(P) -5, (P)).

2€P1/Pa,y#x
Since the presence of the pair of entries x,y implies the presence of y, z, we may infer from
our lemma 3.12 that each of 6, 0, (P), 0,0, (P), 4, 9, (P), 6, 6, (P) occurs exactly twice and

signs can be chosen so as to ensure that the composition is 0. O

The homology, Betti numbers and Euler Characteristic of an abstract cubical complex
are those of the chain complex of the abstract cubical complex, and are calculated in the same

manner as for simplicial complexes.

Example 3.14. Calculating the homology of an abstract cubical complex.
Consider the 2-simplex with vertices a,b,c. Let S be the set of all subsets of these ver-
tices. Let K be the abstract cubical complex consisting of the ordered set S together

with the set of S-pairs of dimension 2 or less. The six pairs of dimension 2, for example

48

3.3. ABSTRACT CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

are:({a, b, ¢}, {b}), ({a, b, c}, {a}), ({a, b, ¢}, {c}), ({a, b}, 0), ({a, ¢}, 0) and ({b, ¢}, D).

{a,b,c}<—{a,b}

{b, ¢} {0}

{a,c} {c}

{a} 0

K is represented by the chain complex

028 %2 712 %, 78

where
-1 1 0 -1 0 1 0 0 0 0O 0 0
-1 0 1 0 -1 0 0 1 0 0 0
0 -1 1 0 0 0O -1 0 1 0 0 0
09 = ,
0 0O 0 -1 1 0 0 0O 0 -1 1 o0
0 0 0 O 0 -1 1 0O 0 -1 o0 1
0 0O 0 O 0 0 0o -1 1 0 -11

49

3.3. ABSTRACT CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

-1 1 0 0 0 0 0 0
-1 0 1 0 0 0 0 O
-1 0 0 1 0 0 0 0
0 -1 0 0 1 0 0 O
o -1 0 0 0 1 0 O
5 — 0 0 -1 0 1 0 0
o 0 -1 0 0O 0 1 0
o 0o o0 -1 0 1 0 O
o 0 o0 -1 0 0 1 0
0o 0 o0 o0 -1 0 0 1
o 0o o0 0 0 -1 0 1
0o 0 o0 O o0 0 -11

The (i,)™ entry in §, represents the orientation of the i (n — 1)-dimensional cell in ;%
n-dimensional cell.
We can then calculate that

Z if n=0,2
Hn(K>:

0 if n#0,2

The 0" and 2@ Betti numbers are 1 and the others are 0. The Euler Characteristic is 2.

Any cubical complex can be faithfully represented as an abstract cubical complex. We
present the algorithm used as a proof. First we define a number of functions used within the
algorithm.

Remark: any abstract cubical complex can conversely be expressed as a cubical complex, if

the cubical complex is of sufficiently high dimension.

50

3.3. ABSTRACT CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

Definition 3.15. A binary Gray code reflection [21] G, is a bijection from {0,1}" given by

0 if n=1and xz=0,
1 if n=1landxz=1,

0G,_1(x) if 0<x<2nl -1,

1Gp1(2" —1—2) if 2"l <z<2n—1

This then gives that for any two consecutive integers i, 7 < 2" the strings G, (i) and G, (j)
are of length n and differ by 1 in exactly one component and are equal elsewhere.

Define p: {0,1}" — P({1,2,...,n}) where P is the power set. If s = (s1,...,,) then p(s) is
defined by i € p(s) if and only if s; = 1, for 1 <4 < n. This function maps a binary string to
a set of integers, with each integer indicating the position of a “1” in the binary string.

Define « to be a function which concatenates multiple strings of integers into a single string.

Theorem 3.16. Every cubical complex can be faithfully represented as an abstract cubical

complez (ie. they have isomorphic chain complezes).

Proof. Let K C R™ be a cubical complex with 1-skeleton K'. An embedding using binary
Gray code reflection can be used to embed K into the graph of the cube IV for some
N. Here I" can be thought of as the poset of subsets of {1,2,...,N}. The vertices of
any face F' of K correspond to an interval in the poset 1". This interval has upper bound
maz(F) C {1,2,..., N}, say, and lower bound min(F) C {1,2,...,N}.

Thus we can represent K as the abstract cubical complex with

Vertex set = { those vertices of I" lying in the embedded image of K* }
Pairs = { {max(F),min(F)} : Fis a cube inK. } =

Example 3.17. The following extract of GAP code illustrates some simple homology calcu-
lations for a 3-cube with some alterations, with creation of the abstract cubical complex both

from a selection of pairs of subsets and by conversion from a cubical complex.

51

3.3. ABSTRACT CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

gap> A:=[[[1,2,3,41,[1,2,3,411,
(011, 0113, 001,2,3,41, 011113

gap> B:=MakePairsToAbstractCubicalComplex(A);;

(This is further described in Chapter 5, but in this case it

suffices to note that it creates an abstract cubical complex,

which corresponds to a solid 3-dimensional cube.)

gap> C:=ChainComplexOfAbstractCubicalComplex(B);; B is the union of the 3-cube
gap> Homology(C); [[1,2,3,4],[1]]
(Col, 01,011,011 and all cells in its boundary.

gap> Remove(B!.pairs[4],1);;

(This removes the first (and only) three-dimensional cell

from the complex, leaving a hollow 3-dimensional cube.)

gap> C:=ChainComplex0fAbstractCubicalComplex(B);;

gap> Homology(C);

ttol,t1,0o01,01]

gap> Remove(B!.pairs[3],3);;
(This removes a 2-dimensional cell.)
gap> C:=ChainComplex0fAbstractCubicalComplex(B);;

gap> Homology(C);

(col,01,01,01]
B — ([[1727374]7[1“ +

[[1,2, 4], [1]])

52

3.3. ABSTRACT CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

gap> Remove(B!.pairs[3],1);;
(This removes another 2-dimensional cell.)

gap> C:=ChainComplex0fAbstractCubicalComplex(B);;

gap> Homology(C);

[[01,001,01,[1] B —([[1,2,3,4], 1] +
[11,2,4],[1]]

+[[1,2,3,4],[1,2]])

gap> Remove(B!.pairs[2],8);;

(This removes an edge.)

gap> C:=ChainComplex0fAbstractCubicalComplex(B);;

gap> Homology(C);

[[031,01,01,01]
[[1,2,4], [1]]

+[[1,2,3,4],[1,2]) +
[[1,2,4], 1, 2])).

The following GAP code extract illustrates the creation of an abstract cubical complex

from a cubical complex.

93

3.3. ABSTRACT CUBICAL COMPLEXES CHAPTER 3. CUBICAL COMPLEXES

gap> D:=PureCubicalComplex([[[1]1]11);;

gap> F:=PureCubicalComplexToCubicalComplex(D);;
gap> G:=CubicalComplexToAbstractCubicalComplex(F);;
gap> H:=ChainComplexOfAbstractCubicalComplex(G);;
gap> Homology (H) ;

(ttol,01,01,011

gap> Size(G!.pairs[1]);

8

gap> Size(G!.pairs[2]);

12

gap> Size(G!.pairs[3]);

gap> Size(G!.pairs[4]);

gap> F!.binaryArray[2] [2] [2]:=0;;

gap> G:=CubicalComplexToAbstractCubicalComplex(F);;
gap> H:=ChainComplex0OfAbstractCubicalComplex(G);;
gap> Homology (H) ;

ttol,fi1,Lo01,[1]

54

4 Permutahedral Complexes

In this section we introduce and develop some theory for tessellated complexes based on
permutahedra. A selection of reasons are listed here briefly to illustrate our motivation for
using complexes with a permutahedral tessellation. We elaborate on some of these reasons

later in the chapter.

1. The contracting homotopy approach discussed in Chapter 2 for pure B-complexes is
practical up to dimension 3 in the category of pure cubical complexes, and up to di-
mension 4 in the category of pure permutahedral complexes.

Remark: Working with non-pure complexes, homotopy theoretic techniques can be used
in higher dimensions. However, such techniques are often slower than those for pure

complexes.

2. It is relatively simple to convert from readily available cubical to permutahedral image
formats, especially if we are only interested in analysing topological properties as there
is less need to account for skewing and stretching. Though the homology of a pure
cubical complex and pure permutahedral complex with the same binary array need not
be isomorphic, experiment has shown that the persistent homology through thickenings

of each is similar.

3. There in no ‘connectivity ambiguity’ with permutahedral data, unlike with cubical data.

This is explained in detail on page 54.

4. A permutahedron has fewer neighbours than a cube, yielding computational advantage

for algorithms which require the manipulation of these neighbours.

95

4.1. THE PERMUTAHEDRON CHAPTER 4. PERMUTAHEDRAL COMPLEXES

5. Some data, such as medical data [31][32][4], images from Fuji’s F30 super CCD camera,

and data for some computer game graphics, are already produced hexagonally [41][42].

4.1 The permutahedron

Figure 4.1: Hexagons can be used to tessellate a 2-dimensional plane.

The permutahedron (n — 1)-dimensional permutahedron is an (n — 1)-dimensional polytope

embedded in n-dimensional space. Its vertices are formed by permuting the coordinates of

the vector (1,2,...,n). Two vertices u and v of a permutahedron are connected by an edge
if (u1,us,...,uy,) can be obtained by permuting exactly two of the coordinates v; and v; in
(vi,v2,...,v,) and |v; — vj| = 1.

Example 4.1. The permutahedron of dimension 2 is a hexagon embedded in R®, whose

vertices have coordinates (1,2,3),(1,3,2),(2,3,1),(3,2,1),(3,1,2),(2,1,3). See Figure 4.2.

The 3-dimensional permutahedron is a truncated octahedron. [34] Its vertices are the

permutations of the integers 1...4.

o6

4.1. THE PERMUTAHEDRON CHAPTER 4. PERMUTAHEDRAL COMPLEXES

(1.3.2)
(1,2,3)

(2,31

(2.1.3)

(3.2.1)

(3.1.2)

Figure 4.2: A 2-dimensional permutahedron is a hexagon embedded in R3.

(3,1,2,4) (3,1,4,2)

Figure 4.3: A 3-dimensional permutahedron is a truncated octahedron embedded in 4-dimensional

space. Its vertices are the permutations of the integers 1..4. [22]

o7

4.1. THE PERMUTAHEDRON CHAPTER 4. PERMUTAHEDRAL COMPLEXES

Ml [N2| P Pl | N1 |P2
MNi| o [MH M2 | O |
M5 | Mé |y i | M4 | P4

(a) (b)

Figure 4.4: Connectivity paradox

There is some debate, from an engineering point of view, in the pure cubical context,
over whether two cells which share only a vertex are actually connected. See Figure 4.4(a).
If it is taken that a cell has eight neighbours other than the cell itself, then the cell O in
4.4(a) has a closed boundary. But P is a neighbour of O also, meaning that O is connected
to the region outside the shape. Similarly, if it is taken that a cell has four neighbours other
than the cell itself, then as illustrated in Figure 4.4(b), the cell O has a boundary of four
cells, N1, N2, N3, N4 which are unconnected to one another, which would imply O were
connected to the region outside the ‘annulus’, yet none of the outside cells P; are connected
to O. Throughout this thesis we have adopted the usual convention [43] that cells which are
present in some space X have eight neighbours excluding the cell itself, whereas any cell in
R™ but not in X has four neighbours other than itself. It is worth noting that there is no such
ambiguity in the permutahedral case. If two n-dimensional permutahedra are connected they
share an n — 1-dimensional cell. This gives that for any space X, in the permutahedral case,
we know that Comp(Cont(X)) is homotopy equivalent to Cont(Comp(X)), where Comp(X)
is the complement of X and Cont(X) is a homotopy retract of X. This is not true for cubical
complexes. See Figs. 4.5 and 4.6.

If we wish to calculate the fundamental group of a link diagram, for example, in the pure
cubical case we must find the complement of the original diagram and then contract that before
calculating the critical cells of a homotopy equivalent CW-space. In the pure permutahedral
case, however, we can first contract the original diagram, leaving us with a smaller CW-space

whose complement we can then use. See Chapter 6.5 for an example.

o8

CHAPTER 4. PERMUTAHEDRAL COMPLEXES

THE PERMUTAHEDRON

4.1.

(c) Cont(X)

Comp(X)

)

(b

X))

(Comp(

(e) Cont

X))

Cont(

(d) Comp(

Figure 4.5: Cont(Comp(X)) # Comp(Cont(X))

(e) Cont(Comp(X))

(d) Comp(Cont(X))

Comp(Cont(X))

~

Figure 4.6: Cont(Comp(X))

99

4.1. THE PERMUTAHEDRON CHAPTER 4. PERMUTAHEDRAL COMPLEXES

An n-dimensional permutahedron has 2"t —1 neighbours, including itself, and permuta-
hedral tessellations can thus be expected to have certain advantages over cubical tessellations
for functions which use the neighbourhood of cells. The function ThickenedPureCubical-
Complex in 3-dimensions requires that for every f in a pure cubical complex X every entry in
Nx:(f) =1, where X’ is the thickened complex. So for each individual facet, 27 neighbours
must be ascertained to have the value ‘1’. In the pure permutahedral case the correspond-
ing number is 15. The difference becomes more pronounced as the dimension increases as
seen in Table 4.1. In general an n-dimensional cube will have 3" neighbours, whereas an

n-dimensional permutahedron will have 2"+ — 1.

Table 4.1: Number of neighbours of a n-cell in a pure complex of dimension n.

n | Cubical | Permutahedral
1 3 3

2 9 7

3 27 15

4 81 31

5 243 63

Example 4.2. The following extract of GAP code illustrates a greater efficiency of the
ThickenedPurePermutahedralComplex function compared to ThickenedPureCubicalCom-
plex. Here a 3-dimensional image constructed by layering fifty copies of the binary array of
K, where X = |K|, see Figure 4.7, on top of one another is thickened both cubically and

permutahedrally.

60

4.1. THE PERMUTAHEDRON CHAPTER 4. PERMUTAHEDRAL COMPLEXES

——

Figure 4.7: | X|
2]

gap> L:=List([1..50],i->StructuralCopy(K));;
gap> P:=PurePermutahedralComplex(L);;

gap> C:=PureCubicalComplex(L);;

gap> ThickenedPurePermutahedralComplex(P) ;time;
Pure permutahedral complex of dimension 3.
21069

gap> ThickenedPureCubicalComplex(C);time;

Pure cubical complex of dimension 3.

86061

Furthermore, the smaller number of neighbours, and thus the smaller number of possible
neighbourhoods for the pure permutahedral case makes it possible to store a list of all positive
neighbourhoods (recall that a cell with positive neighbourhood is one which can be removed
without affecting its neighbourhood’s homology) in four dimensions, whereas in the cubical
case this was only possible in up to three dimensions. Table 4.2 indicates the number of
possible neighbourhoods and positive neighbourhoods for both the pure cubical and pure
permutahedral complexes. This optimal redundancy test enables us to efficiently compute

homotopy retracts in four dimensions in the permuathedral case.

61

4.2. RY

CHAPTER 4. PERMUTAHEDRAL COMPLEXES

Table 4.2: Possible and positive neighbourhoods of a n-cell in a pure complex of dimension n.

Possible
n | neighbourhoods in

the cubical case

Positive
neighbourhoods in

the cubical case

Possible
neighbourhoods in

the permutahedral case

Positive
neighbourhoods in

the permutahedral case

1 4
2 256

3 67108864

4 | 1.20892582 x 10%*

5 | 7.06738826 x 1072

2
116
41123720

4
64
16384
1073741824
4.61168602 x 10'®

2
30
7500
280694770

4.2 R,

If we identify R™ with the hyperplane in R™**! consisting of all vectors whose components sum

to zero, and let P be the abelian group generated by the columns of the (n + 1) x (n + 1)

matrix

-n 1
1 -—n
1 1

1 1
1 1
1 —n

then the facets of the tessellated space RS are combinatorially equivalent to an n-permutahedron.

Example 4.3. The permutahedron of dimension 2:

The vectors (—2,1,1) and (1,—2,1) generate R%. A pure permutahedral complex K whose

binary array,

0
A=1] 0

1

100
1 00
1 01

62

Chapter 4. Pure permutahedral complexes

has entries at (1,2),(2,2),(3,1),(3,2), and (3,4), will therefore have a corresponding space

X = |K| whose entries are Dirichlet-Voronoi cells centred at

1x(=2,1,1)4+2x (1,-2,1) = (0,—3,3)
2x (=2,1,1) +2 x (1,-2,1) = (-2, -2,4)
3x (=2,1,1) +1x (1,-2,1) = (=5,1,4)
3x (=2,1,1)+2x (1,-2,1) = (=4, —1,5), and
3% (=2,1,1) +4 x (1,-2,1) = (=2, -5,7).

4.3 Pure permutahedral complexes

Definition 4.4. Recall our definition of a pure B-complex from Chapter 2. An n-dimensional
pure permutahedral complexr is a pure B-complex whose basis vectors are defined by T' =
(t1,t2,...,t,) where each t; is of length (n + 1) and has coordinates which sum to 0 and are
equivalent mod (n + 1). The calculation of the neighbours in a pure permutahedral complex

is explained in the next section.

Definition 4.5. The lattice Lp C R’ is the set of the centres of all facets in the permutahedral

tessellation of R™. A pure permutahedral space X is some tessellated subspace of R’.

Example 4.6. The 2-dimensional pure permutahedral complex with binary array

011
K=1101
110

indicates that the corresponding pure permutahedral space X = |K| C R? with basis T =
{(-2,1,1),(1,—-2,1)} would have facets with centres at (0,—3,3), (1, —5,4), (—3,0, 3),
(—=1,-4,5),(-5,1,4),(—4,-1,5).

63

4.4. NEIGHBOURS IN]Rg CHAPTER 4. PERMUTAHEDRAL COMPLEXES

4.4 Neighbours in R}

An n-dimensional permutahedron has 27! —1 neighbours including itself. It shares an (n—1)-
dimensional cell with each neighbour other than itself. The centre of this shared (n — 1)-cell
is half-way between the two neighbours, so we can find the coordinates of the centres of the
neighbours using the centres of (n — 1)-dimensional faces.
The vertices of the n-dimensional permutahedron are given by all permutations of {1,...,n+
1} and two of these vertices u = (uy, ug, ..., u,),v = (v1,v2,...,v,) are connected by an edge
if v can be obtained by swapping u; and w;, where |u; — u;| = 1.
The 2-dimensional case we could calculate as follows: A 2-dimensional permutahedron P
shares a 1-dimensional cell with 6 neighbours. The vertices of P are (1,2, 3), (1,3,2),(2,3,1),
(3,2,1),(3,1,2),(2,1,3), and are connected as illustrated in Figure 4.2.
The centres of the 1-cells are thus (1,2.5,2.5), (1.5, 3,1.5),(2.5,2.5,1),(3,1.5,1.5),
(2.5,1,2.5),(1.5,1.5,3), and so the corresponding neighbours of P which is centred at (2,2, 2)
are (0,3,3),(1,4,1),(3,3,0),(4,1,1),(3,0,3),(1,1,4).
Using the basis in Example 4.3; t; = (1,1,-2),t2 = (—1,2,—1), we can describe the centre
of each neighbour as (2,2,2) +n where n € N and N = {—t1 — to, —t1, —to,t1 + ta,t1,t2,0}.
For higher dimensions it is more difficult to visualise and, thus, capture which vertices
are in an n—1-dimensional face. Choosing our basis T for]de such that t; = (—d, 1,...,1),ts =
(1,—d,1,...,1),...,tq=(1,...,1,—d, 1), where each ¢; is of length d + 1, gives a convenient
description of the neighbours of a d-permutahedron with coordinates (pi,...,pq); such that
they can be described by (pi,...,pq) £n € N where n € {\it1 + Aato + ... + A\gtq} where
Ai € {0,1}.
Remark: We abuse notation and use “the permutahedron P” and “the permutahedron
with centre P” interchangeably. In general, for any n-dimensional permutahedron P, its

neighbourhood N (P) is given by P +n for n € N.

Definition 4.7. Two facets p,q in X are said to be incident if p € Nx(q).

64

4.5. CHAIN COMPLEX CHAPTER 4. PERMUTAHEDRAL COMPLEXES

.-——————
R e

Figure 4.8: A 2-dimensional pure permutahedral space
4.5 Chain complex

An n-dimensional facet of a pure permutahedral complex does have (n—1)-dimensional cells in
its boundary, but unlike in the cubical case, their structure is not consistent. A 3-dimensional
permutahedral cell, for example, has both six-sided and four-sided 2-dimensional faces. For
this reason we do not have the notions of a permutahedral complex or abstract permutahedral
complex analogous to those for the cubical case. Instead, we express the k-cells in an n-
dimensional pure permutahedral complex as an intersection of n + 1 — k£ mutually incident

permutahedral cells.

Definition 4.8. A k-dimensional cell in an n-dimensional pure permutahedral complex K
is a subset containing n + 1 — k pairwise incident facets in R%, at least one of which lies in
X = |K|. The boundary of a k-dimensional cell which is the subset of facets p1,pa, ..., Dnit1—k
consists of the (k — 1)-dimensional cells which are the intersections of p1,p2, ..., pnr1—x and

a facet p, which is incident with each of them.

Example 4.9. In Figure 4.8 the pure permutahedral space X C R?g comprises the three
2-cells Hy, Hg, Hy. An edge e which lies in X is expressed as the intersection of two pairwise
incident facets in R?D, both of which must contain e and at least one of which must be in X.
The edge Fo, for example, is the intersection of the 2-cells Hs, Hg, both of which are in X. The
edge F is described as the intersection of Hy and Hy even though Hy is not in X. Similarly
the vertices V71,V, and V3 are described as the intersections of { He, Hs, Hg}, { H2, H3, Hg} and

65

4.5. CHAIN COMPLEX CHAPTER 4. PERMUTAHEDRAL COMPLEXES

{Hs, Hg, Hy} respectively.

The chain complex of X in Figure 4.8 is Z3 RENY/ALRLING AL , where

-1 -1 0 -1 11 1 0 0O O O O OO0OO
g = o 0 -1 -1 0 -10 0 1 1 1 0 00 0 |->
o o0 o0 o0 0 0 0 -10-10-1111

i1 1 0 O O O o o o o0 o0 0 o0
-1 0 0 -1 0 0 0O o o0 0o o0 0 O
0 0 1 1 o o0 o0 o o o0 o0 O
o 0 -1 0 -1.0 O O O O 0 o0 O
0 -1 0 o -1. o 0o o0 o0 0 0 O
o o 60 -1 0 0O -1 0 O O O 0 0
o o o0 o0 O -1 0 -1 0 O 0 0 O
o1 = 0o 0 o0 o0 0 0 1 10 0 0 0 O
o o o0 o0 -1 0o O O -1 0 0 0 O
o o o0 o0 o0 O -1 0 O -1 0 0 O
o o0 o0 o0 o o o o0 1 1 0 0 O
o o o0 o0 o0 o o -1 0 0 -1 0 O
o o o0 o0 o o0 o o o -1 0 -1 0
o o0 o0 o0 o o0 o o o0 o0 -1 0 -1
o o0 o0 o0 o o o o o o0 0 1 1

This gives that Hy(X) = Z and all other homologies are trivial.

Definition 4.10. A chain complex C.(K) of a pure permutahedral complex K is a sequence
of free abelian groups Cy, C1, ... together with homomorphisms 9, : C,, — Cp,_1, where C; is
the free abelian given by an ordered list of the i-cells and §; given by the boundaries of the

i-cells.

The system of labelling k-cells as intersections of n-cells lends itself to a convenient

66

4.5. CHAIN COMPLEX CHAPTER 4. PERMUTAHEDRAL COMPLEXES

description of a simplicial complex W which is the dual complex of a pure permutahedral

complex K, whence we can calculate the homology of K.
e Let each facet in K represent a vertex of W.

e For every intersection of k facets present in K, let there be one k-simplex in W con-

necting the corresponding k + 1 vertices.

This natural map gives rise to a homomorphism between the n** homology groups of K and
W. There exist many efficient algorithms for computing the homology of simplicial complexes,

so we can easily find H,(W).

67

5 Implementation

HAP is a homological algebra library created by Ellis for use with the GAP computer al-
gebra system. As part of this thesis we developed some theory and functions pertaining to
cubical complexes as part of HAP, and an extension called HAP_Permutahedral which im-
plements many of the same functions for permutahedral complexes. This chapter describes
how the complexes defined in the previous chapters are created and represented in HAP and
HAP_Permutahedral and describes the algorithms for functions which operate on such com-

plexes. The code for HAP_Permutahedral can be found in Appendix C.

5.1 Representation and Creation

Recall Definition 2.13 In all cases for a complex K we define the index set
A(K) = {Cartesian(List([l..arraySize(K)]i]]),7 € [1..dimension(K)}.

The notation ay is taken to mean the entry at A!.binaryArray[A][Ae]...[Ad]-

The cases we have implemented are
e pure cubical complexes; where T is a list of orthonormal basis vectors,

e pure permutahedral complexes; where T is a list of d basis vectors t; = {1,1,...,—d,..., 1}

where the (i 4+ 1) entry in ¢; is —d.

68

5.1. REPRESENTATION AND CREATION CHAPTER 5. IMPLEMENTATION

Example 5.1. The 3-dimensional balls used in the pure cubical and pure permutahedral

complexes, respectively, are
e [[-1,-1],[-1,0],[-1,1],[0,-1],[0,0],]0,1],[1,—1],[1,0],[1, 1]] and
e [-1,-1],[-1,0],[0,-1],]0,0],]0,1],[1,0],[1, 1]].

A pure B-complex K corresponding to a space X is represented in HAP by a component

object having three components:

e X!.binaryArray is a binary array; K!.binaryArray with entries (ky) for A € A(K)

where
1 if D(Aitp + ...+ Agtg) lies in X

Exie,.aa =

0 otherwise
e X! .properties: alist of pairs such as ["arraySize", [100,200]],["IsContracted","true"]
e K!.ball: a list which, when added to any entry k) in K gives all the neighbours of k.

A binary array of dimension 1is a list L = [l ..., [,] where each [; is either 0 or 1. The
array size of L is the singleton [n]. A binary array of dimension d > 1is a list L = [y, ..., [,]
where each [; is a binary array of dimension d — 1 and all [; have the same array size. The

array size of L is the list of integers got by appending n to the array size of any ;.

Figure 5.1: X C R,

The pure cubical complex K where X = |K| in Figure 5.1 has binary array

69

5.1. REPRESENTATION AND CREATION CHAPTER 5. IMPLEMENTATION

1 11
100
1 11
0 01

The following functions work for regularly tessellated complexes in general, though our
implementations are directed at those with permutahedral and cubical tessellations. Note
that in the more general setting of regular CW-spaces, it is not necessary to record a distinct
data type for these objects - only the ball, which indicates the neighbourhood of a cell in the
space, is recorded. The function Dimension returns the dimension of a pure complex, and the
function Size, when applied to a pure complex K returns the sum of all k) ie. the number
of facets in X = |K|. A pure complex K is obtainable from a binary matrix A using the
functions PureComplex by creating a component object K, assigning K!.binaryArray to be
A, and calculating K'!.properties Dimension and arraySize from A.

A pure complex can also be obtained from a non-binary array A with threshold integer ¢
using ArrayToPureComplex. Here all entries of A with value less than ¢ are given the value
‘1’ in K!.binaryArray and are O otherwise. The function ReadImageAsPureComplex reads
a 2-dimensional image as an array whose entries are the RGB values of the pixels and uses a
user-inputted threshold to thus create a pure complex. Similarly, ViewPureComplex converts
the binary array from a pure complex to a black and white image.

The View function can also be used on three objects to provide an image of a 2-dimensional
slice of the object. The function View inputs a d-dimensional pure complex and an integer list
of length d. This integer list must have two zero entries, which indicate which perspective the
image is being viewed from. Take, for example, the 3-dimensional object W, which consists

of a stack of 20 of the 2-dimensional slices in Figure 5.2.

Figure 5.2: The 2-dimensional slice which we stack to form our three dimensional space W.

70

5.1. REPRESENTATION AND CREATION CHAPTER 5. IMPLEMENTATION

Using the View function in HAP_Permutahedral we can produce a sequence of 2-

dimensional images of W from different perspectives.

Figure 5.3: A selection of 2-dimensional slices viewed as though we were progressing through the

object from left to right through the stack.

Figure 5.4: A selection of 2-dimensional slices viewed as though we were progressing through the

object from the top down.

4-dimensional objects can be similarly viewed, though it is difficult to glean any mean-
ingful information from them.

The function Sample inputs a pure permutahedral complex P and a positive integer n
as arguments. It returns a subcomplex of P which is the union of n distinct randomly selected

points.

71

5.1. REPRESENTATION AND CREATION CHAPTER 5. IMPLEMENTATION

The function ShrinkPureComplex can be useful in the case where we have a very large
complex which might otherwise be difficult to work with. It “shrinks” the inputted pure
permutahedral complex to a smaller, more manageable, pure permutahedral complex. This
may cause the loss of some information, but in general the returned complex should offer a

reasonable representation of the original.

Algorithm 5.2. ShrinkPureComplex
Input: An n-dimensional pure complex K
Output: A pure complex K’ which is approximately homeomorphic to K, but whose binary
array is only ?’nth of the size.
Procedure:
Set A := EvaluateProperty(K, "array size");
G

g};

Set K’ to be a binary array with all zero entries and array size [%, %, cees
for k) € A(K') do
for i € {-1,0,1}" do
3n
if Zk'QA_H > ? then
Set K\ =1;
end if

end for

end for

Another function which may be used to reduce the size of the complex is CropPure-
Complex, which inputs a pure complex K and returns a pure complex L obtained from K
by removing any “zero boundary sheets” of the binary array. Thus L and K are isometric as
Euclidean spaces but there may be fewer zero entries in the binary array for L.

The function BoundingPureComplex inputs a pure complex K and returns a contractible pure
complex L containing K.

The function ComplementOfPureComplex when applied to some pure complex K returns a
copy K’ of K where for every entry k with value 1 in K!.binaryArray the corresponding

value k¥’ in K'! .binaryArray is 0, and £’ is 1 otherwise.

72

5.1. REPRESENTATION AND CREATION CHAPTER 5. IMPLEMENTATION

Algorithm 5.3. ComplementOfPureComplex
Input: A pure complex K
Output: A pure complex K’ such that ¥\ =1 if ky =0 and k\, =0if k) = 1.

Procedure:

K':= Copy(K);

for k), =1 do
K\ == 0;

end for

for k), =0 do
K\ =1,

end for

A number of functions take two pure complexes (with the same array size) as their

argument.

Algorithm 5.4. Pure Complex Union
Input: Two pure complexes I,.J

Output: A pure complex K such that every k) is the maximal value of i) and jy.

Procedure:
K = Copy(I);
for £y, =0 do
if j, =1 then
ky:=1;
end if
end for

Using similar algorithms, PureComplexIntersection(/,.J) returns a pure complex K
with binary array such that k) = 1 if and only if both ¢y = 1 and j, = 1, and PureComplexD-
ifference(I,J) returns a pure complex K with binary array such that k) = 1 if and only if

i,\zlande:O.

73

5.2. NEIGHBOURHOODS CHAPTER 5. IMPLEMENTATION

5.2 Neighbourhoods

The “d-ball” in relation to a d-dimensional pure complex K is defined to be the list of neigh-
bours of a d-dimensional cell centred at the origin. This list can then be added to any cell f
in the complex to give Nk (f).

In the cubical case the d-ball for a cell with coordinates [i1, i, . .., i4] consists of all [iy, i, . .., i4]+
k, where k € [—1,0, 1]d. For example, the neighbours of a 2-dimensional cell centred at the
origin are [[-1,—1],[-1,0],[-1,1], [0, —1],[0,0], [0, 1], [1, —1],[1,0], [1, 1]] so adding this d-ball
to any cell f with coordinates [, j], its neighbourhood consists of [[i — 1,j — 1],[i — 1,7],[i —

Lj+ 16,7 —1], [, 4], 6,5+ 1], i+ 1,5 = 1], i + 1, 4], [+ 1, 5 + 1]].

The d-ball for a d-dimensional pure permutahedral cell with coordinates [i1,i2,. .., 4]
consists of all [i1,ia,...,iq] & &, where x € [0,1]%. For example, the neighbours of a 2-
dimensional cell centred at the origin are [[—1,—1],[—1,0], [0, —1], [0, 0], [0, 1], [1, 0], [1,1]] so
adding this d-ball to any cell f with coordinates [i, j], its neighbourhood consists of [[i — 1, j —

1]7 [Z - 17ﬂ7 [%] - 1]7 [iaj]’ [7’7] + 1]) [7’-_’— 17.7]7 [i+ 1,j + 1“

For all of the functions for pure complexes, unless otherwise stated, the only real dif-
ference in the implementation is the choice of d-ball. Consider the following algorithm which

makes use of this “d-ball”.

Algorithm 5.5. Thickened Pure Complex
Input: Pure complex K
Output: A pure complex K’ such that if ky =1 then every e in Ng/(k)) has value 1.

Procedure:

K' := K repeat:=true;
for k) in A(K) do
for e in d-ball do

k3\+e =1

74

5.2. NEIGHBOURHOODS CHAPTER 5. IMPLEMENTATION

end for

end for

The function Boundary0fPureComplex makes use of a combination of some of the pre-

vious functions.

Algorithm 5.6. Boundary Of Pure Complex
Input: Pure complex K
Output: A pure complex K’ such that k£ = 1 if and only if not every k), q = 1.
Procedure:
A := Complement(K); B := Thickened(K);

K' := PureComplexIntersection(A, B);

The function ExcisedPureComplexPair inputs a pure complex K and a subcomplex L
and returns a list containing K’ which is a copy of the pure complex K but with the interior

of L removed, and the boundary of L .

Algorithm 5.7. Excised Pure Complex Pair

Input: Pure complex K and subcomplex L

Output: A list containing the pure complex K’ such that k) = 1 if and only if ky = 1 and [
is not in the boundary of L, and the boundary of L.

Procedure:

B := Boundary0OfPureComplex(L);
D := PureComplexDifference(L, B);
K' := PureComplexDifference(K, D);

return [K’, D]

The d-ball is also used in splitting a pure complex into its distinct path components. It
selects an ‘uncoloured’ cell, ‘colours’ it, and then recursively assigns the same colour to all cells
in the neighbourhood of cells of that colour. Another uncoloured cell is then chosen and given
a new colour, whereupon the process is repeated. When there are no uncoloured cells remain-

ing, the pure complex whose cells are the cells of the n'” colour is the n*" path component. It

75

5.2. NEIGHBOURHOODS

CHAPTER 5. IMPLEMENTATION

contains a recursive inner function ColourNeighbours which colours the neighbouring facets

in a complex of a given facet the same colour as the facet itself.

Algorithm 5.8. Colour Neighbours

Input: Pure complex K and a coordinate list A such that k) =1

Ouput: A pure complex K’ such that every facet in the same path component as k) has the

same value.
Procedure:
for d in d-ball do
if not £y, 4 = 0 then
Trtd ‘= T)
ColourNeighbours(X, A + d)
end if

end for

Let A be the array

1

PC := PathComponent0fPureCubicalComplex(A) splits this binary array into its separate

1

o o O

1

o o O

o o O

path components in an object stored with the array

PC :

The 2nd path component then, for example has binary array

2

= e e O

2

- O

4

76

= ke O O O

o O o w O

o O O W w

5.2. NEIGHBOURHOODS

CHAPTER 5. IMPLEMENTATION

o o o O

0

o o o o

0

o o o o O

0
0

0
0

Algorithm 5.9. Path Component Of Pure Complex

Input: Pure complex K and an integer n

Output: The n'" path component K’ of K. If n = 0 then the number of path components is

returned.
Procedure:
Set count= 1;
while k) is 1 do
count:=count+1;
Add X to Kl.representatives
ColourNeighbours(K, ky)
end while
if n =0 then
return count;

else

A:=StructuralCopy(K!.binaryArray) * 0

end if
for ky =n—1do
ay = 1;
return PureComplex(A)

end for

9

As part of the PathComponent0fPureComplex function, the inputted complex P is as-

signed a Pl.representatives, which is a list of cells {ci,...,¢,} where p is the number of

path components and no two ¢;,c; are in the same path component. This is of use when

constructing an acyclic subcomplex, or calculating homology.

7

5.3. LIST OF POSITIVE NEIGHBOURHOODS CHAPTER 5. IMPLEMENTATION

The function SingularitiesOfPureComplex inputs a d-dimensional pure complex K, and
positive integers r and t. It returns a subcomplex K’ of K containing the union of k) such
that the region within the sphere of radius r about k) is ‘non-differentiable’ according to the

given threshold ¢.

Figure 5.5: Singularities calculated with » = 10 and ¢ = 15.

5.3 List of positive neighbourhoods

As mentioned in Chapter 2, a look-up list indicating the positive neighbourhoods in d-
dimensional space can be created. Such a list is included for up to four dimensions in the
permutahedral case in the package created as part of this thesis. A similar list for five di-
mensions would contain 4.6 trillion entries and fell beyond the scope of this project. The nt?
entry in this look-up list for d-dimensional homotopy retractable neighbourhoods corresponds
uniquely to a list whose entries are the digits in the binary representation of the integer n.
The ** entry of this binary list represents the neighbour, in some fixed position, of a facet f.
If the n'* entry is 1 then the facet f can be removed without affecting the homotopy of the
neighbourhood. Henceforth the “look-up value” of the neighbourhood of a facet k) is denoted
by L(ky).

Use is made of this list in the following algorithm, which inputs a complex and a sub-

complex thereof and returns a minimal subcomplex which is homotopy equivalent to the first

complex subject to the condition that it contain the input subcomplex:

78

5.3. LIST OF POSITIVE NEIGHBOURHOODS CHAPTER 5. IMPLEMENTATION

Algorithm 5.10. Homotopy Equivalent Minimal Pure Complex
Input: Pure complex K and subcomplex J.
Output: A minimal pure complex K’ which is a homotopy retract of K and contains .J.

Procedure:

K’ := K; repeat:=true;
while repeat=true do
repeat:=false;
for X in A(K) do
if £\ =1 and jy =0 and L(ky) =1 then
| 1= 0; repeat:=true;
end if

end for

end while

The function HomotopyEquivalentMaximalPureComplex operates similarly, but instead
of removing cells, adds all possible cells to the subcomplex under the constraint that it must

remain a subcomplex of K which is homotopy equivalent to J.

The function ContractedPureComplex uses HomotopyEquivalentMinimalPureComplex,
but the subcomplex in the argument is empty, so all cells can be removed which do not change
the homotopy of the original complex. ContractibleSubcomplexOfPureComplex uses the
Size and PathComponent0fPureComplex functions to ascertain the largest path component
of a complex, and then uses HomotopyEquivalentMaximalPureComplex to find a contractible
subcomplex thereof. AcyclicSubcomplexOfPureComplex inputs a pure complex K and re-
turns the maximal subcomplex K’ of K such that H,(K’) = 0 for n > 1. These are useful

for calculating the homology of a pure complex.

Using a combination of iterations of CropComplex, BoundingComplex,

79

5.3. LIST OF POSITIVE NEIGHBOURHOODS CHAPTER 5. IMPLEMENTATION

HomotopyEquivalentMaximalPureSubcomplex and ContractedComplex we can calculate the

ZigZagContractedComplex of a pure complex.

5.3.1 Creating LY

d__ .
23°~1 was constructed, wherein

To create the list de for the d-dimensional case a list of length
the n'" entry corresponds uniquely to a list I of length 3¢ — 1 where the entries are digits
of the binary representation of the integer n. Each entry in [refers to a fixed neighbour
of a d-dimensional cell; the facet is present if and only if the corresponding entry in [is 1.
If Homology(Nk(f)) = Homology(Ng(f)) then the n' entry in L¢ = 1. Calculating the

226

homology of, in the three-dimensional cubical case, pure cubical complexes, would be

time consuming, so the method used for verifying homology consistency is outlined here.
Nk (f) is contractible for any facet f. Thus Ho(Ng(f)) =1 and H,(Ngk(f)) =0 for n > 0,

and x(Ng(f)) =1 for any f. So Ng(f) is not positive if and only if

o Ho(Nk(f)) # 1 or
o H,(Ng(f)) > 0 for some n > 0.

There can be no holes of dimension n in a d-dimensional space if n > d. To check for positivity
in 2-dimensions it suffices to verify that the number of path components is 1 and that the
Euler characteristic is 1, as x(K) = fo(K) — B1(K) becomes 1 = 1 — B1(Ng(f)), giving
Bi(Nk(f)) = 0.

In 3-dimensions, given Euler characteristic of 1 and one path component 1 = 1— 61 (Ng (f))+
Bao(Nk (f))-

The neighbourhood of an n-dimensional facet can contain at most one hole with n — 1-
dimensional boundary, which would require the neighbourhood to be homotopy equivalent to
an n — l-sphere. In 3-dimensions the Fuler Characteristic of an n — 1-sphere is 2. Thus if
X(Nk(f)) =1 and Bo(Ng(f)) = 1 then Ng(f) is positive.

This method does not hold for higher dimensions, but as the list]L4C is of length 1.20892582 x
10%* it would be impossible to store in any case. Using symmetries it might be possible to

reduce the size of the list necessary, but this would require a number of extra checks to be

80

5.3. LIST OF POSITIVE NEIGHBOURHOODS CHAPTER 5. IMPLEMENTATION

performed for every cell. This would negate the advantage of the efficiency of simply checking

the corresponding entry in ILj% to see whether the neighbourhood is positive or not.

5.3.2 Creating L%

As with the cubical case, to check for positivity of a facet f in 2 and 3 dimensions, it suffices
to verify whether N x (f) is path-connected and has Euler Characteristic 1. When creating the
L‘}g however these conditions do not suffice. The n and n — 1 homologies can be discounted
as with the 2 and 3 dimensional cases, but it is possible that x(Ng(f)) = Bo(Nk(f)) —
BNk (f)) + Bo(Ng(f)) is satisfied even though x(Ng(f)) = 1 and Go(Ng(f)) = 1 and is
not positive.

Consider the neighbourhood N4(f) of some facet f in A, with binary array

[0,1,1],[0,1,1],[0,0,0]] [[0,0,1],[0,1,0],[0,0,0]] [[0,0,0],]0,0,0],[0,0,0]]
[[0,0,1],[0,1,0],[0,0,0]] [[0,1,1],[1,1,0],[0,0,0]] [[0,0,0],[L,0,0],[1,1,0]]
[[0,0,0],1[0,0,0],[0,0,0]] [[0,0,0],[1,1,0],[1,0,0]] [[0,0,0],]1,1,0],[0,1,0]]

We find that So(Na(f)) = 1, B1(Na(f)) = 1, B2(Na(f)) = 1, 83(Na(f)) = 0, Bs(Na(f)) =0
and x(Na(f))) = 1, so the neighbourhood is not positive as f’s removal would alter its 1st
and 2nd homologies. The ‘path-connectedness’ and ‘Euler characteristic of 1’ conditions are
satisfied though. Therefore in 4 dimensions it is necessary to impose a third condition for a
neighbourhood to be positive. Testing that either 31(N4(f)) = 0 or B2(Na(f)) = 0 forces the
other to be 0, and thus along with the previous two conditions is sufficient to test for positivity.
Since the homology computation of the neighbourhood of a cell in the permutahedral case is
relatively slow, owing to the size of the boundary homomorphisms, we instead calculated the
first homology of homotopically equivalent simplicial complexes. The implementation for this

230 ‘once-off’ iterations, it makes sense to use this

in GAP is more efficient, and as there are
method. Owing to the symmetric nature of the construction, we only need to calculate and

store half of the entries in the list.

81

5.4. CHAIN COMPLEXES CHAPTER 5. IMPLEMENTATION

5.4 Chain complexes

5.4.1 Cubical complexes

In HAP a cubical complex K with X = |K]| is represented as a component object consisting

of

e a binary array X!.binaryArray = (ax, x,,. \,) Where

1 if DAty + ... + Anty) lies in X
Ay A, =

0 otherwise

e X! properties: alist of pairs such as ["arraySize", [100,200],["IsContracted","true"]

While this representation is similar to the representation of a pure cubical complex, it is
important to note that they represent different objects. A ‘1’ in a d-dimensional pure cubical
complex X at x) represents a d-dimensional cell, whereas a ‘1’ in a cubical complex at
represents an m-dimensional cell, where m is the number of even entries in .

A pure cubical complex can be converted to a cubical complex as illustrated in section 3.2.
Recall that () is the number of even entries in A\. The chain complex of a cubical complex

can be calculated using the following algorithm:

Algorithm 5.11. ChainComplexOfCubicalComplex
Input: A d-dimensional cubical complex X.
Output: Associated chain complex of X.
Procedure:
for every x) in [1..d] do
Add A to a list l¢(y) of all {())-dimensional cells.
end for
for m in [0..d — 1] do
Create an array of dimensions Length(l,,+1) X Length(l,,).

end for

82

5.4. CHAIN COMPLEXES CHAPTER 5. IMPLEMENTATION

for every A in l,,4+1 do
for every k in [,,, do
if Kk = A with ‘1’ added to one of A’s odd entries then
Add 1 to the m + 1*" matrix
end if
if kK = A with ‘-1” added to one of \’s odd entries then
Add -1 to the m + 1** matrix
end if
end for
end for
Set Dimension to be an internal function which, given an argument n returns
the length of the [, list.
Set Boundary to be an internal function which, given arguments 4, j returns the

4% row of the i*" matrix.

The homology, Euler Characteristic, Betti numbers, etc. can be calculated for a cubical
complex using its chain complex, or of a pure cubical complex via conversion to a cubical

complex.

5.4.2 Pure permutahedral complex

Unlike for pure cubical complexes, a pure permutahedral complex has no convenient cor-
responding “permutahedral complex”. Instead, we describe an n-dimensional cell in a d-
dimensional pure permutahedral complex as the intersection of d + 1 — n d-dimensional
cells. The boundary of an m-dimensional cell which is the intersection of d-dimensional
cells p1,p2, ..., Pd+1—m d-dimensional cells consists of the (m — 1)-dimensional cells which are
the intersections of p1,p2, ..., Pd+1—m, Dk, Where pi is a neighbour of each d-dimensional cell
D1,02, - - -y Pd+1—m- Lherefore we use the function PurePermutahedralComplex_Cells which
inputs an n-dimensional pure permutahedral complex and returns a list of length n+ 1 where
the it" entry is the list of n + 1 — i intersecting facets representing the i — 1-dimensional cells.

The GAP code extract below shows an example of this function.

83

5.4. CHAIN COMPLEXES

gap> A:=[[0,1,1],[1,0,1],[1,1,0]1];;

gap> P:=PurePermutahedralComplex(A);;

gap> C:=PurePermutahedralComplex_Cells(P);;
gap> C[3];
(fr2,311,002,411, 03,211, (3,411, [[4,2]1],[[4,3]1]]
(These are the 6 facets of P.)

gap> C[2];

(Cf1,31,02,311, [[1,4],[2,3]1, [[1,4],[2,4]],
[f1,51,[2,411, [([2,2],[2,3]11, [[2,2],[3,2]1],
[r2,31,12,411, f2,31,13,211, ([2,3],[3,3]1]1,
([2,4],[2,5]1, [[2,4],[3,3]]1, [[2,4],[3,4]],
[f2,s1,13,411, [I3,11,13,211, [I[3,2]1,[3,3]1],
((s,21,[4,111, [[3,2],[4,2]11, [[83,3],[3,4]1]1,
[rs,31,04,211, [[3,31,14,311, [I[3,4]1,[3,5]11,
[(3,4]1,[4,3]11, [[3,4]1,[4,411, [[4,1],[4,2]1]1,
([4,2],[4,3]], [[4,2],[5,11], [[4,2],[5,2]],
[[4,3]1,[4,411, [[4,31,[5,2]11, [[4,3]1,[5,311]
(These are the 30 edges in P, each formed by the intersection of
two facets.)

gap> C[1];

(rfs,31,01,41,2,311, [[1,3],[2,2],([2,3]],
[f1,41,[1,5],02,411, [[1,4]1,[2,3],[2,4]1],
([1,81,[2,4]1,[2,61], [[2,2],([2,3],[3,2]],
(f2,21,s,11,03,211, [[2,3],[2,4],[3,3]],
[f2,31,0s,21,03,311, [[2,4],[2,5],[3,4]],
[[2,4]1,(8,3],[3,411, [[2,5],[3,4],[3,5]1],
(es,11,0s,21,04,111, [[3,21,1[3,31,[4,2]11,
([3,21,04,1]1, 4,211, [[3,3],[3,4],[4,3]1],
((s,sl,[4,21,04,3]1]1, [[3,4],[3,5],[4,4]],
[(3,41,[4,3],04,4]11, [[4,1]1,[4,2]1,[5,1]1],
([4,2],[4,3],[5,2]1], [[4,2],(5,1],[5,2]],
[(4,31,[4,41,05,311, [[4,31,[5,2]1,[5,3]1]1]
(These are the 24 vertices in P, each formed by the intersection of

three facets.)

84

CHAPTER 5. IMPLEMENTATION

5.5. COMPUTATION TIMES CHAPTER 5. IMPLEMENTATION

Algorithm 5.12. ChainComplexOfPurePermutahedralComplex
Input: A d-dimensional pure permutahedral complex K.
Output: Associated chain complex of K.

Procedure:

Cells:=PurePermutahedralComplex_Cells(K).

Set Dimension to be a function which, given an argument n, returns the length
of the list Cells[n + 1].

Set Boundary to be a function which, given arguments ¢, j returns the list of

orientations of the i — 1-dimensional cells in the j** i-dimensional cell.

5.4.3 Chain complex of pair

For both pure cubical and pure permutahedral complexes, one can make use of chain com-
plexes of excised pairs using functions such as the previously outlined
HomotopyEquivalentMinimalPureComplex and ContractibleSubcomplex. Given a com-
plex, X, one can choose a contractible subcomplex A and excise A from X using Algorithm
5.7, as described in Chapter 2.1, leaving a complex whose chain complex may be substantially
smaller and easier to compute. See Example 2.9 in Chapter 1. The initial space had 4446
facets, but we can excise a contractible subcomplex thereof containing 4279 facets, enabling
us to efficiently calculate the homology of the complex.

The Euler characteristic, Bettinumbers, and Homology can all be calculated from the

chain complex.

5.5 Computation times

Here we give the timings for a number of computations to compare the permutahedral and
cubical implementations. The complex K used throughout is from the image shown in Figure
5.6. All times are given in milliseconds and are the average of a number of computations. The
“Size” listed is the number of facets in the resultant complex. The machine used is a 2GHz

Linux laptop with 1Gb of RAM.

85

5.5. COMPUTATION TIMES CHAPTER 5. IMPLEMENTATION

——

Figure 5.6: X = |K|
2]

Table 5.1: Comparison of timings and resultant complexes

Function Permutahedral timing | Size | Cubical timing | Size

BoundaryOfPureComplex 424 8933 364 9218
Complement 176 29940 180 29940
ContractedComplex 392 4303 360 2502
C:=ContractibleSubcomplex 976 36452 748 36451
HomotopyEquivalent-

MaximalPureSubcomplex(K,C) 48 36452 60 36451
PathComponentOfComplex(K,2) 24 36968 28 36968
Singularities(K,10,15) 70640 3055 50567 3202
Thickened(K) 40 49372 52 49880
ZigZagContracted (K) 3780 334 4004 199

86

5.5. COMPUTATION TIMES CHAPTER 5. IMPLEMENTATION

Table 5.2: Comparison of timings

Function Permutahedral | Cubical
ChainComplexOfPair(K,C) 11317 1608
EulerCharacteristic(K) 5884 4636
Homology(K) 1828 1620

The following tables are iterations in 3-dimensions - in these cases the complex is P,
where Y = |P| is constructed by “stacking” ten copies of the previous X on top of one another.

P:=PureComplex(List ([1..10],i->StructuralCopy(K!.binaryArray)));;

Table 5.3: Comparison of timings and resultant complexes

Function Permutahedral | Size | Cubical | Size
BoundaryOfPureComplex(P) 9761 91590 | 11649 | 92180
Complement(P) 2937 299400 | 3408 | 299400
C:=ContractedComplex(P) 4980 4303 7061 2502
D:=ContractibleSubcomplex(P) 24862 366753 | 25537 | 366710
HomotopyEquivalent-

MaximalPureSubcomplex(P,D) 944 366753 | 2196 | 366710
PathComponentOfComplex(P,2) 11337 369680 | 11813 | 369680
Singularities(C,5,10) 136148 4303 37635 2502
Thickened(P) 2452 498292 | 14657 | 498800
ZigZagContracted(P) 27538 339 20285 848

87

5.5. COMPUTATION TIMES

CHAPTER 5. IMPLEMENTATION

Table 5.4: Comparison of timings for chain complexes of permutahedral and cubical representations

Function

Permutahedral

Cubical

Homology

28386

34443

Taking X to be a further “stack” of 10 copies of Y, we calculate the homology of P where

|P| = X. Note that we convert the pure permutahedral complex to a simplicial complex after

contraction.

88

5.6. SOFTWARE COMPARISON CHAPTER 5. IMPLEMENTATION

gap> L:=List([1..10],i->StructuralCopy(P!.binaryArray));;
gap> P:=PurePermutahedralComplex (L) ;

Pure Permutahedral Complex of dimension 4.
gap> SizeOfPurePermutahedralComplex(P);
4094900

gap> C:=ContractedComplex(P) ;time;

Pure Permutahedral Complex of dimension 4.
98186

gap> SizeOfPurePermutahedralComplex(C);

4303

gap> K:=PureComplexToSimplicialComplex(C,5);
Simplicial complex of dimension 2.

gap> Homology(K,0) ;time;

3

16

gap> Homology(K,1) ;time;
[o,o,o0,o0,o0,o0,0,0,0,0,o0,o0,0,0,0,0,0,0,0,0]1
82493

gap> Homology(K,2);time;

[]

115943

gap> Homology(K,3) ;time;

[]

107851

gap> Homology(K,4) ;time;

L]

115723

5.6 Software Comparison

There are a number of related software packages which deal with the computation of homology

and persistent homology such as

89

5.7. ABSTRACT CUBICAL COMPLEXES CHAPTER 5. IMPLEMENTATION

e CAPD [30] from the CHomP [2] group
o Plex [10].

e Dionysus [29]

e Kenzo [35]

There is some difficulty in comparing the efficiency of HAP with other software pack-
ages, as they serve different purposes and accept different inputs. Plex and Dionysus, for
example, focus on the computation of persistent homology [1] based on implementing efficient
row-reduction algorithms for the boundary matrices of simplicial complexes, whereas our aim
was to implement efficient and modular software for general computations in homology to
be incorporated into the GAP system. The approach used in HAP and HAP_Permutahedral
also underlies the CAPD homology software [30] based on cubical complexes. As with Kenzo,
our approach gives a central computational role to homotopy retracts, but our implemen-
tations are aimed more at data drawn from Euclidean spaces than from simply connected
spaces arising in theoretical algebraic topology, which is the primary focus of Kenzo’s pack-
age. HAP and HAP_Permutahedral aim to implement the general functionality of elementary
algebraic topology in GAP, a pre-existing system for computational discrete algebra. Us-
ing HAP_Permutahedral and its algorithms implemented for permutahedral complexes, it is
possible to efficiently compute the homology of 4-dimensional data sets. HAP works for tes-
sellated spaces with lattice structure in general, with the sole difference in implementation for
many algorithms between different tessellations being the adjustment of the neighbourhood

of a cell, which is noted as a component of the object.

5.7 Abstract cubical complexes

A cubical complex X C I can be represented abstractly as the set S = {1,...,2"V} of vertices
of I" together with a finite collection K of pairs of subsets (0%, 7;) where {7, C o1} and 7%, o
are subsets of S. In the poset of all subsets of S the interval from 7 to o has geometric

realization a cube of dimension || —|7%| if 7 C o). To represent a pure finite cubical complex

90

5.7. ABSTRACT CUBICAL COMPLEXES CHAPTER 5. IMPLEMENTATION

X c IV it is necessary and sufficient for all set differences o} \7; to have common size. Any

cubical complex can be expressed as an abstract cubical complex as outlined in Chapter 3.

Algorithm 5.13. Chain Complex Of Abstract Cubical Complex
Input: An abstract cubical complex X of dimension d.
Output: The chain complex of X.

Procedure:

Separate the pairs in X into lists L,, of all m-dimensional pairs
for m in 1..d do
Create an array with Length(L,,) rows and Length(L,,_1) columns
for every m-dimensional pair m; do
Add the orientation of each m — 1 dimensional pair m —1; to the mt* array
in the j*" entry in the i*" row
end for
end for
Set Dimension to be a function which, given an argument n returns the length
of the L, list.
Set Boundary to be a function which, given arguments i, j returns the j** row

of the it" matrix.

The homology, Betti numbers, and Euler Characteristic of an abstract cubical complex
can be calculated from the chain complex.

As well as calculating an abstract cubical complex from a cubical complex, we can also
create an abstract cubical complex from a set of pairs P. Each P = [P}, P,] is of the form
Py C P1. A set of pairs P admits the structure of an abstract cubical complex if and only if
for every [a,b] and b C ¢, [a,c] is also present. The function PairsToAbstractCubicalCom-
plex inputs a set of pairs and returns the abstract cubical complex which they form if they
satisfy the above condition and returns fail and a missing pair if they do not. The function
MakePairsToAbstractCubicalComplex inputs a set of pairs and then adds the extra pairs

necessary to complete the abstract cubical complex.

91

5.7. ABSTRACT CUBICAL COMPLEXES CHAPTER 5. IMPLEMENTATION

gap> A:=[[[1,2,3,4],[1,21],([[1,2,3],[1,3]],[[1,3],[1]1],
(f1,21,1113,0031,0311,[[1,2,3,4],[1,3,411];;

gap> P:=PairsToAbstractCubicalComplex(A) ;
[[1,2,3,4],[1,2,3,4]] must be a pair.

fail

gap> M:=MakePairsToAbstractCubicalComplex(A);

Abstract cubical complex of dimension 3.

gap> C:=ChainComplex0fAbstractCubicalComplex(M);;

gap> Homology(C,0);

[0,0]

gap> Homology(C,1);

(o]

gap> M!.pairs;

(ccesy, rs311, rfi1,2,3,41,101,2,3,411, [[1,2],[1,2]1],
[f1,2,31,01,2,311, [[1,3]1,[1,3]11, [[1]1,([11],
([1,3,41,[1,3,411, [[1,2,4],[1,2,4]1],
[(cee,2,31,01,311, [[1,31,0111, [[1,21,[11]1,
[(1,2,3,4]1,[1,3,4]1]1, [[1,2,3,4],[1,2,3]1],
(f1,2,31,01,211, [I1,2,3,4],11,2,4]1], [[1,2,4],[1,2]]1],
[fr1,2,3,41,01,2111, 11

In Figure 5.7 (a) is illustrated a possible geometric realisation of the abstract cubical
complex with cells as defined by A above, with 2-cells in blue, 1-cells in green, and 0-cells
in red. Applying PairsToAbstractCubicalComplex returns fail and informs us of one of the
missing cells which needs to be filled in. MakePairsToAbstractCubicalComplex bypasses

this and simply fills in the necessary cells, leaving us with (b).

92

5.7. ABSTRACT CUBICAL COMPLEXES CHAPTER 5. IMPLEMENTATION

[1,34] [1.2,3,4] [1,2,3] [1,3]

e

n241 [1,2] [1] 3]

(a) A:=[[[1,2,3,4],[1,2]11,[[1,2,3],[1,3]],C[1,3],[1]1],[[1,2]1,[111,((31,(31]1,[[1,2,3,4],[1,3,41]]

.34 [L1,234] [1,2,3] [1,3]

e

24 01,21 (1] 3]

(b) gap> M:=MakePairsToAbstractCubicalComplex(A);

Figure 5.7: Using MakePairsToAbstractCubicalComplex to force a selection of pairs to be part of

an abstract cubical complex.

93

6 Potential Applications

6.1 Estimating Topology

It was suggested in Chapter 2 that we could estimate the homology of some topological space
X by calculating the persistent homology of a random sample S C X of the population
through a number of thickenings. Table 6.1 below lends credibility to this idea by illustrating
that for a range of standard mathematical spaces X C R™ we can recover the topology of X

by thickening a small sample of points from X.

e Let X denote an annulus in the plane with outer radius 2 and inner radius 1. We
consider X as a population from which we wish to sample. We represent X as a pure

cubical complex involving 9575 2-cells. Its first three Betti numbers are 1,1,0.

e Let Y denote an annulus in the plane with outer radius 10 and inner radius 9. We
consider Y as another population from which we wish to sample. We represent Y as a

pure cubical complex involving 9472 2-cells. Its first three Betti numbers are 1,1,0.

e The population Z is equal to the union of X and X’ where X’ is obtained by translating

X through a distance 3. It contains 18866 2-cells. Its first three Betti numbers are 1,2,0.
e The population W is a hollow cube obtained by removing a solid cube of side 5 from

the centre of a solid cube of size 13. Its first three Betti numbers are 1,0,1.

e We can also consider direct products M x N = {(m,n):m € M,n€ N}. If M and N

94

6.1. ESTIMATING TOPOLOGY CHAPTER 6. POTENTIAL APPLICATIONS

o0

X Y Z

are pure cubical complexes of dimensions a and b respectively, then M x N is naturally

a pure cubical complex of dimension a + b.

e Let T be a hollow square obtained by removing a solid cube of side 14 from the centre
of a solid cube of size 20. We represent 1" as a pure cubical complex. Let the population
U =T xT. The population U then has the homotopy type of a torus, with 121584

4-cells and Betti numbers 1,2,1.

e Our samples are finite sets of points chosen randomly from the population according
to a uniform distribution. We deem a sample S to be representative of a population
M if the Betti numbers of M agree with those of a significant number of consecutive
thickenings of S. We consider this number of thickenings to be significant if it is greater
than or equal to a quarter of the number of thickenings required to turn .S into an object
with one path component which will not yield any holes through further thickening. The
accuracy column gives the percentage of respresentative samples among ten selections
of S. For efficiency in the case where M = U we use discrete Morse theory and compare
the number of critical cells of the population M and the thickenings of the sample S

respectively, as opposed to the Betti numbers.

95

6.1. ESTIMATING TOPOLOGY CHAPTER 6. POTENTIAL APPLICATIONS

Table 6.1: Estimating population topology from samples

Population | Sample size | Accuracy
X 429 (5%) 100%
X 96 (1%) 100%
X 48 (0.5%) 90%
X 24 (0.25%) | 90%
X 10 (0.1%) 40%
Y 473 (5%) 100%
Y 95 (1%) 100%
Y 48 (0.5%) 100%
Y 24 (0.25%) | 100%
Y 9 (0.1%) 50%
Z 943 (1%) 100%
Z 566 (0.75%) | 80%
Z 377 (0.5%) 50%
Z 189 (0.25%) | 40%
W 384 (20%) 90%
W 192 (10%) 60%
W 96 (5%) 60%
W 19 (1%) 0%
U 384 (1%) 100%
U 192 (0.75%) | 60%
U 96 (0.5%) 20%

In Figure 6.1 are a few examples of persistent homology bar codes for some of the spaces

used above.

96

6.2. IMAGE SEGMENTATION CHAPTER 6. POTENTIAL APPLICATIONS

(a) The B, persistent homology of a series of thickenings of S C X with 96 cells.

(b) The B:1 persistent homology of a series of thickenings of S C Y with 95 cells.

(c) The B2 persistent homol-
ogy of a series of thickenings
of S C W with 142 cells.

Figure 6.1: A selection of bar codes from the above samples.

6.2 Image segmentation

Image segmentation can be described as the process of partitioning a digital image into mul-
tiple segments. [38] The aim of segmentation is to change an image’s representation into
something that is more meaningful or easier to analyse. With image segmentation, every
pixel in an image will have certain common visual characteristics, such as colour, intensity
or structure. In Figure 6.2 we see an image divided by means of colour. This was done by
varying the input threshold value in our ReadImage algorithm, which calculates the sum of
the RGB values of a pixel and compares it to a user-input threshold.

The main method of image segmentation which we are interested in is feature recogni-
tion. Using functions such as the Boundary and Singularities detailed in Section 2.7, we
aim to detect the edges and vertices of images. Ideally, detecting the edges in an image would
lead to curves which indicate the boundaries or discontinuities of objects. In this manner we
can filter out some ‘less relevant’ information, whilst still preserving the important structural
information. The examples used are two-dimensional for ease of illustration, but the methods
can equally be applied to higher dimensional data.

It is not always possible to obtain ideal edges from real life images of even moderate

complexity - fragmentation is an issue; where edge curves are not connected, and we also

97

6.2. IMAGE SEGMENTATION CHAPTER 6. POTENTIAL APPLICATIONS

a) Original image "Rainbow”

7\ mf\\\f\\

(b) "Rainbow” converted to a pure cubical complex with thresholds of 480, 405, 300 and 210 respectively.

Figure 6.2: Segmenting an image by colour.

encounter false edges; where ‘unimportant’ edges are highlighted.

Fragmentation can sometimes be countered by thickening, as in Figure 6.3 (¢), but this
is not always the case. Likewise, false edges, which crop up regularly in medical imaging or
as ‘noise’, or outliers in statistical data, can sometimes be ‘cleaned up’ by removing path
components of less than a certain size as in Figure 6.3 (d) where we created a ‘copy’ of
the original image which only includes those path components greater than a certain size.
Our software’s handling of the aforementioned errors in complicated images is rather crude,
and there is better imaging software available for this, but we include these examples here to
illustrate that our algorithms, with some amendments, could be used independently for image
analysis.

In Figure 6.3 [45] we convert the photograph into a black and white image representing
a pure cubical complex. Some fragmentation is evident, as the kite appears to be in two
parts. After a couple of thickenings to amend this, we notice some false edges in the form of
a number of small dots to the left of the picture, which register as extra path components.
Simply removing all path components of less than a given area gets rid of these. Taking
the boundary of the resulting image gives an object with significantly fewer data points
(2496, as opposed to 53754) which nevertheless provides a good approximation to the original.
Calculating the singularities of this and thickening then gives us five path components, which

correspond to the wing tips, the tail, the beak, and the ‘crossing’ of the wings.

6.2. IMAGE SEGMENTATION CHAPTER 6. POTENTIAL APPLICATIONS

(a) A photograph of a kite. (b) The image as converted to a

pure cubical complex.

(¢) A number of thickenings ensures the kite is a single path component, and
then we ‘clean’ the image up by removing any very small path components.

"~
N
v
C
J
(d) We can take the boundary (e) The singularities of the im-
of this to give a faithful repre- age are located at the wing-tips,
sentation which lends itself to tail-tip, beak, and wing-crossing

easier computation. of the bird.

Figure 6.3: Singularity detection.

99

6.2. IMAGE SEGMENTATION CHAPTER 6. POTENTIAL APPLICATIONS

Suppose we want to calculate the number of washers, nuts and bolts in Figure 6.4 The
number of bolts can easily be calculated as the number of path components less the number
of one-dimensional holes. But as both nuts and washers are single path components with one-
dimensional holes, we must then take note of a components singularities. We note that the
boundary of a washer seems smooth, whereas the boundary of a washer contains singularities
at six points. Finally, we can distinguish between washers of different sizes using thickenings
or size analysis.

The code used to generate the images is shown here.

gap> A:=ReadImageAsPureCubicalComplex("washersnutsbolts.jpg",250);;

gap> ViewPureCubicalComplex(A)

(b)

gap> B:=PureCubicalComplex(A!.binaryArray*0);;

gap> for i in [1..PathComponentOfPureCubicalComplex(A,0)] do

> if not EulerCharacteristic(PathComponent(A,i))=0 then

> B:=PureCubicalComplexUnion(B,PathComponentOfPureCubicalComplex(A,i));;
fi;od;

(©)

gap> C:=PureCubicalComplex(B!.binaryArray=*0);;

gap> for i in [1..PathComponentOfPureCubicalComplex(B,0)] do

> if Size(SingularitiesOfPureCubicalComplex(PathComponent(B,i),5,50)=0 then
> C:=PureCubicalComplexUnion(C,PathComponent0fPureCubicalComplex(B,1i));;
fi;od;

(d)

gap> D:=PureCubicalComplex(C!.binaryArray*0) ;;

gap> for i in [1..PathComponentOfPureCubicalComplex(C,0)] do

> p:=ThickenedPureCubicalComplex (PathComponentO0fPureCubicalComplex(C,1i)
> for j in [1..7] do p:=ThickenedPureCubicalComplex(p);;

> if EulerCharacteristic(p)=0 then

> D:=PureCubicalComplexUnion(D,PathComponentOfPureCubicalComplex(C,1i));;

fi;od;od;

100

6.2. IMAGE SEGMENTATION CHAPTER 6. POTENTIAL APPLICATIONS

(a) A photograph of nuts, washers and (b) The photograph in (a) represented as

ooo
O

o o)
o 0O 00

(c) We remove from X all path compo- (d) We then remove any path components
nents with no 1-dimensional holes which have singularities above a certain
tolerance. This removes the “nuts”.

O
O

O

(e) We can then discern between larger
and smaller washers by assessing how
many thickenings a path component per-
mits before its 1-dimensional hole disap-
pears. Here, we have removed the smaller
“washers”.

Figure 6.4: Discerning objects from one another using segmentation.

101

6.2. IMAGE SEGMENTATION CHAPTER 6. POTENTIAL APPLICATIONS

This example contains no overlapping objects, though it is conceivable that such a
situation might occur. Using combinations of previously mentioned techniques, it is possible,
in many cases, to distinguish the overlapping objects within a component. A component
comprised of overlapping bolts, for example, will have Euler characteristic 1. A component
comprised of a pair of overlapping washers or nuts will have Euler characteristic 0 or -1 or -2,
in which case we might analyse the components’ singularities to find out which the objects
are. It is, of course, possible to create a scenario where such two-dimensional analysis will not
work. Two washers stacked directly on top of one another will be virtually indistinguishable
from a single washer without using three-dimensional data, for example.

Another geometric method for distinguishing objects is to use the function Punctured-
PurePermutahedralComplex, which inputs a pure permutahedral complex and integer r and
creates an empty sphere of radius r about the centre of gravity of the pure permutahedral
complex. In Figure 6.5 none of the objects have useful singularities, but by analysing a se-
quence of ‘punctures’ of the pure permutahedral complex, we can see that two of the objects
will have two path components which persist for a number of rs. This helps us to distin-
guish between long, thin objects and short, fat ones, for example, which might have the same
homology and non-distinguishing singularities.

The code used to generate the images is shown here.

gap> A:=ReadImageAsPureCubicalComplex("punctured. jpg",300);;

(a) gap> B:=PurePermutahedralComplex (StructuralCopy(A!.binaryArray*0));;
gap> for r in [10,50,80] do

> for i in [1..PathComponentOfPurePermutahedralComplex(A,0)] do

> B:=PurePermutahedralComplexUnion (

> B,PuncturedPathComponentOfPurePermutahedralComplex

> (PathComponentOfPurePermutahedralComplex(A,i),r));; od;

> ViewPurePermutahedralComplex(B); od;

102

6.3. TRACKING COMPONENTS CHAPTER 6. POTENTIAL APPLICATIONS

Vel o

(a)

Ao 0

(c) (d)

Figure 6.5: Two of the objects have two persistent path components for a range of radii.

6.3 Tracking Components

One of the original motivating examples behind our research was the analysis of MRI scans,
specifically, the tracking of the movement of particular organs etc. within the body. If
6 is the length of time or distance, for example, between successively created images of an
n-dimensional space X containing non-intersecting components c;..c; whose movement is con-
tinuous, then for some sufficiently small § it is possible to embed the sequence of X;s into
an (n + 1)-dimensional space and use PathComponent to identify a given path component at
each stage.

A 3-dimensional MRI scan of a patient is a sequence of hundreds of 2-dimensional images.
While a doctor must visually identify which component in a particular slice corresponds to
a given organ or body part, it would seem practical and beneficial to automate the process
of then identifying this same body part of interest in the hundreds of other 2-dimensional
slices. While it transpired that obtaining data from medical images was impractical, a toy
example illustrating the idea is given in Figure 6.6. Given more specialised software, it should

theoretically be possible to monitor the movement of specific organs etc. within the body.

103

6.4. MEASURING SHAPE CHAPTER 6. POTENTIAL APPLICATIONS

- B E/

A series of images of a space X with two path components.

I o
— N
O

- /7
g
/ g /// o

I T T

Figure 6.6: We track the first path component as it moves through the space X.

6.4 Measuring Shape

In their paper, "Measuring Shape with Topology”, McPherson and Schweinhart [28] “propose
a measure of shape which is appropriate for the study of a complicated geometric structure,
defined using the topology of neighborhoods of the structure”. They analyse three examples
of polymers constructed by different processes “which are all models for physical processes
of interest” and the main component of their analysis relies on calculating the persistent
homology of the polymers. To illustrate that our computer package could be useful for such
analysis, we take a copy of a section of each of the polymers they use and calculate its
first persistent homology through a number of thickenings. The times taken for the three
examples over ten thickenings were 1616, 218, and 1036 seconds respectively. Further, using
permutahedral complexes’ property that Cont(Comp(X) = Comp(Cont(X) it is sometimes

easier to calculate Gp(Comp(X)) instead of (1 (X).

104

6.4. MEASURING SHAPE CHAPTER 6. POTENTIAL APPLICATIONS

* 25
— 6

—

.94

= 3

e 2

(a) Sample from a branched poly-
mer. Source: McPherson &

Schweinhart [28]

(b) Sample from a Brownian tree.
Source: McPherson & Schweinhart

[28]

¢ 52

(¢) Sample from a
self-avoiding ~ walk.
105

Source: McPherson

& Schweinhart [28]

6.5. KNOTS CHAPTER 6. POTENTIAL APPLICATIONS

AVAY,

Figure 6.8: B: A link diagram for Borromean rings embedded in Euclidean 3-space.

6.5 Knots

HAP’s functions for tessellated spaces can be used to obtain a presentation for the fundamen-
tal group of the complement of a link diagram. Working with permutahedral complexes, the
property that two n-dimensional permutahedra ‘touch’ if and only if they share an (n — 1)-
cell, as detailed in Chapter 5, enables us to compute the critical cells of the complement of
a link diagram more efficiently. Table 6.2 illustrates the computation of the critical cells of
the Borromean rings in Figure 6.5. The function ReadLinkImageAsPurePermutahedralCom—
plex("image. jpg") inputs an image file containing a link diagram and attempts to output

the corresponding link as a 3-dimension pure permutahedral complex.

Table 6.2: Comparison of computation times to obtain a fundamental group

Cubical Size Time | Permutahedral | Size Time
Contracted(B) 3238 33
Crop(B) 33654 4 Crop 1
Complement 1025724 | 3 Complement 352642 | 1
Contracted 114556 | 259 Contracted 70716 | 30
ToCWComplex 63 ToCWComplex 32
CriticalCells 33 CriticalCells 13

106

6.5. KNOTS CHAPTER 6. POTENTIAL APPLICATIONS

The pure permutahedral complex method took 13 seconds as opposed to 33 seconds in
the cubical case. The critical cells in the pure permutahedral case are [[2, 1], [2, 635], [2,4164],
[1,137211],[1,139265], [1,200276], [0,62659]] . The code below provides information about the
generators and relators of the fundamental group. The fundamental group of the complement
of a link diagram is an invariant and might conceivably be used to help distinguish between

complicated knots.

gap>M:=FundamentalGroupOfRegularCWComplex (L) ;

there are 3 generators and 2 relators of total length 22

<fp group of size infinity on the generators [f1, f2, £3]>

gap> RelatorsOfFpGroup(M);

[fLlx 371k f27 1 f3x f2x f1 71 f27 1% f3 1% f2x f3,f1 1% f3 1 x f2x flx 3%
F1T1x f37 1% f27 1% f3%2 % f1x £371]

107

Conclusion and Future Work

A topic of central interest in homological algebra is the computation of homological invariants
of finite spaces. We have shown that certain computations performed using a permutahedral
tessellation can be more efficient than those using cubical or simplicial complexes. The goal
of this project was the development of efficient and practical routines in the computational
algebra language GAP for the manipulation of topological datasets. To this end, we have
produced a user-friendly extension to the software package HAP, complete with a manual,
tutorial, code for functions which provide for both geometrical and homological manipula-
tion and analysis, and comprehensive lists of the contractible neighbourhoods of cubical and
permutahedral complexes for up to three and four-dimensional data respectively. Using the
permutahedral complex we have been able to extend the capabilities of certain functions to

include efficient implementations in four dimensions.

e Certain existing algorithms in our package could no doubt be made more efficient.

e Our implementation for calculating persistent homology relies on contractions of spaces.
It is theoretically possible that these persistent homology computations could be imple-

mented using zig-zag retractions instead which could speed up the process substantially.

e Our implementations focus primarily on cubical and permutahedral tessellations, but it
would be feasible to adjust the operations to accept pure B-complexes in general, where

the relevant neighbourhood would be required as an extra input variable.

e It is likely that the implementation of certain cohomology functions would be somewhat

similar in nature to algorithms we have implemented.

108

6.5. KNOTS CHAPTER 6. POTENTIAL APPLICATIONS

e Although we have thus far failed to realise the initial aim of using our software for
MRI analysis, we do have certain functions which could be of theoretical benefit if
the data were interpretable. It might be worth pursuing the possibility of providing
a compatability layer to synthesise our package with some existing MRI software for
further investigation, and it would certainly be worth pursuing a slight expansion on
the ReadImage function to enable it to accept ranges of differing RGB values which

could then be used to analyse all data of one colour, for example.

109

Bibliography

1]

H. Adams, JPlex with Beanshell tutorial (2011) comptop.stanford.edu/u/programs/

jplex

M. Allili, Z. Arai, M. Gameiro, T. Kaczynski, W. Kalies, K. Mischaikow, M. Mrozek, P.
Pilarczyk, T. Wanner, Computational Homology Project http://chomp.rutgers.edu/

software/
M. A. Armstrong, Basic Topology Springer (1979)

D. Bailey, D. Townsend, P.Valk, M. Maisey Positron Emission Tomography: Basic Sci-

ences Springer (2004)
R. Bott, L. Tu Differential Forms in Algebraic Topology Springer (1982)

G. Carlsson Topology and data Bulletin of the American Mathematical Society 46 (2009)

255-308

G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas “Persistence barcodes for shapes”

Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry Pro-
cessing (2004), 124-135

M. Cohen, A course in simple homotopy theory, Graduate Texts in Maths 10, Springer-
Verlag, (1973).

J. Conway, N. Sloane Sphere Packings, Lattices and Groups Grundlehren der Mathema-
tische Wissenschaften 290 Springer (1999)

110

Bibliography Bibliography

[10] G.Carlsson et al. PLEX, a software package for persistent homology of simplicial com-

plexes, comptop.stanford.edu/u/programs/jplex

[11] G. Denham and P. Hanlon On the Smith Normal form of the Varchenko bilinear form of

a hyperplane arrangement. Pacific Journal of Mathematics (1997), 123-146
[12] G. Ellis, Algorithmic Homology lecture series

[13] G. Ellis HAP - Homological Algebra Programming Version 1.10 (2012), a package for the

GAP computational algebra system. http://www.gap-system.org/Packages/hap.html
[14] G. Ellis and F. Hegarty, Computational homotopy of finite reqular CW-spaces

[15] H. Edelsbrunner, J. Harer, Persistent homology - a survey, in Twenty Years Afterwards

AMS (2007)
[16] H. Edelsbrunner, J. Harer, Computational Topology. An Introduction. AMS (2010)
[17] D. Farley, Finiteness and CAT(0) properties of diagram groups, Topology (2003)
[18] R. Forman Morse theory for cell complexres Advances in Mathematics 134 (1998), 90-145

[19] R. Forman, “A user’s guide to discrete Morse theory” Seminaire Lotharingien de Combi-

natoire 48 (2001)

[20] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12; (2008),

(http://www.gap-system.org).
[21] F. Gray “Pulse Code Communication” U.S.Patent 2,632,058 (1953)
[22] P. Grout Truncated octahedron .png file created using Blender
[23] M. Hall, Theory of Groups American Mathematical Society, Chelsea, (1976)

[24] S. Harker, K. Mischkaikow, M. Mrozek, V. Nanda, H. Wagner, M. Juda, P. Dlotko The
Efficiency of a Homology Algorithm based on Discrete Morse Theory and Coreductions
Proceedings of the 3rd International Workshop on Computational Topology in Image

Context (2010), 41-47

111

Bibliography Bibliography

[25] A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge, (2002)

[26] T. Kaczynski, K. Mischaikow, M. Mrozek Computational Homology Springer (2004), pp.
480

[27] W.S. Massey A Basic Course in Algebraic Topology, Graduate Texts in Mathematics
127, Springer-Verlag (1991)

[28] R. McPherson, B. Schweinhart, Measuring Shape with Topology arXiv:1011.2258v2
[math.AT] (2010)

[29] D. Morozov et al. Dionysus, a C++ library for computing persistent homology www.

mrzv.org/software/dionysus
[30] M. Mrozek et al., Computer Assisted Proofs in Dynamics software, capd.ii.uj.edu.pl

[31] G. Muellehner, J. Karp, A. Guvenis A method for reconstructing images from data ob-

tained with a hexagonal bar positron camera. Transactions on Medical Imaging (1985)

[32] G. Muellehner, J.G.Colsher, R.M.Lewitt A hexagonal bar positron camera: Problems and

Solutions Transactions on Nuclear Science (1983)
[33] J. R. Munkres, Elements of Algebraic Topology. Perseus Books Pub., New York, (1994)

[34] A. Postnikov Permutohedra, associahedra and beyond International Mathematics Re-

search Notices (2005)

[35] A. Romero, F. Sergeraert Discrete Vector Fields and Fundamental Algebraic Topology

Preprint (2010) www-fourier.ujf-grenoble.fr/ sergerar/Kenzo
[36] J. Rotman, An Introduction to Algebraic Topology Springer (1988)
[37] J. Rotman, An Introduction to Homological Algebra Springer (2009)
[38] L. Shapiro, G. Stockman Computer Vision Prentice-Hall pp279-325 (2001)

[39] L. Soicher, The Joy of GAP Packages Proceedings from The Groups in Galway Workshop
(2009)

112

Bibliography Bibliography

[40] A. Tropsha, C.W. Carter, S. Crammer, L.I. Vaisman Simplicial Neighbourhood Anal-
ysis of Protein Packing (SNAPP): A Computational Geometry Approach to Studying
Proteins Methods in Enzymology, Volume 374 (2003) http://dx.doi.org/10.1016/

S0076-6879(03)74022-1

[41] Xiangjian H., Wenjing J., Qiang W., T. Hintz Description of the cardiac movement using
hezagonal image structures Computerized Medical Imaging and Graphics 30 (2006), 377-
382

[42] Xiangjian H., Wenjing J., Namho H., Qiang W., Jinwoong K., Image Translation and
Rotation on Hexagonal Structure Sixth IEEE International Conference on Computer and

Information Technology (CIT’06) (2006) pp.141

[43] H. Xiong Digital Image Processing ivm.sjtu.edu.cn/files/dip/IVM_DIP_Lecture02.

pdf

[44] A. Zomorodian and G. Carlsson, “Computing persistent homology” Discrete Computa-

tional Geometry 33, (2005), 249-274

[45] http://www.public-domain-image.com/cache/fauna-animals-public-domain\
\-images-pictures/birds-public-domain-images-pictures/kittiwake-birds\

\-pictures/white-tailed-kite-bird-in-flight-elanus-leucurus_w579_h725. jpg

113

